Мутационная изменчивость характеризуется тем что возникает внезапно. Закономерности изменчивости. Наследственная (генотипическая) изменчивость. Хромосомная мутационная изменчивость

Раздел 3. Мутационная изменчивость

Разнообразные формы и проявления модификационной изменчивости не затрагивают генотипа организма. Наряду с модификациями существует другая форма изменчивости, меняющая генотип. Эту форму изменчивости называют генотипической или мутационной, а отдельные изменения - мутациями.

Существование наследственных изменений было известно Дарвину. Вся его теория эволюции вытекает из учения о естественном отборе наследственных изменений. Наследственная изменчивость - необходимая предпосылка естественного и искусственного отбора. Однако во времена Дарвина еще отсутствовали опытные данные по наследственности и законы наследования не были известны. Это не давало возможности строго различать разные формы изменчивости в зависимости от наследования.

Понятие мутаций было введено в науку голландским ботаником де Фризом. У растения ослинник (энотера) он наблюдал появление резких скачкообразных отклонений от типичной формы растения, причем эти отклонения оказались наследственными. Дальнейшие исследования на различных объектах - растениях, животных, микроорганизмах - показали, что явление наследственной (мутационной) изменчивости свойственно всем организмам. Мутации затрагивают разнообразные стороны строения и функции организма. Например, у дрозофилы известны мутационные изменения формы крыльев (вплоть до полного их исчезновения), окраски тела, развития щетинок на теле, формы глаз, их окраски (красные, желтые, белые, вишнёвого цвета и т. п.), а также многих физиологических признаков (продолжительность жизни, плодовитость, стойкость к разным повреждающим воздействиям и т. п.). Первоначальные представления де Фриза о том, что мутации всегда крупные наследственные изменения, дальнейшими исследованиями не подтвердились. Наряду с резкими отклонениями гораздо чаще встречаются небольшие мутации, лишь немногим отличающиеся от исходных форм. Тем не менее, указанный еще де Фризом признак мутаций - их скачкообразный характер и наследственность - остается в силе. Мутации совершаются в различных направлениях, и обычно они не являются приспособительными, полезными для организма изменениями.

Существуют и такие наследственные изменения, которые в гомозиготном состоянии вызывают гибель (такие мутации называются летальными).

Частота и причины мутаций

Как часто происходят мутации? Каковы причины их возникновения? Прежде чем ответить на этот вопрос, нужно иметь в виду, что учет возникающих мутаций представляет очень большие трудности. Большинство мутаций рецессивны. Они возникают в генах, локализованных в хромосомах половых клеток. Гамета, несущая вновь возникшую рецессивную мутацию, при оплодотворении обычно соединяется с гаметой, которая такой же мутации не несет. Поэтому вновь возникшая рецессивная мутация фенотипически не проявится. Однако в последующих поколениях она будет размножаться вместе с несущей ее хромосомой, и распространяться среди особей данного вида. Лишь когда соединятся две гаметы, несущие одну и ту же рецессивную мутацию, она проявится фенотипически.

Исследования показали, что в природных условиях мутация каждого отдельно взятого гена происходит очень редко. На первый взгляд может возникнуть представление, что такая малая изменчивость гена не может дать достаточного материала наследственной изменчивости для естественного отбора. На самом деле это не так. У организма имеется несколько тысяч генов, так что общее число мутаций оказывается значительным. Для той же дрозофилы, например, высчитано, что около 5% ее гамет несут какую-нибудь мутацию. Прямые исследования распространения мутаций в природных популяциях дрозофилы, проведенные в разных географических зонах, показали, что они «насыщены» разнообразными мутациями, большинство которых, однако, в силу рецессивности не проявляется видимо. Значительная стойкость гена имеет большое биологическое значение. Действительно, если бы гены легко и часто изменялись, то существование видов стало бы невозможным, ибо в каждом поколении организмы превращались бы в нечто совершенно новое, не похожее на родителей. Относительная стойкость видов - важное условие приспособления организма к окружающей среде.

Способность к мутированию - одно из основных свойств гена. Разумеется, каждая отдельная мутация вызывается какой-то причиной. Однако в большинстве случаев эти причины остаются нам неизвестными. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что различными внешними факторами удается резко повысить число возникающих мутаций. Особенно эффективно действующими факторами экспериментального получения мутаций оказываются такие, которые влияют на нуклеиновые кислоты. Это вполне понятно, так как материальной основой генов служит ДНК.

Впервые в опыте резкое повышение числа возникающих наследственных изменений было получено действием лучей Рентгена. Под влиянием рентгенизации число получаемых мутаций удалось повысить в 150 раз и даже более. С тех пор экспериментальное получение мутаций было осуществлено на самых различных организмах - от бактерий и вирусов до млекопитающих и цветковых растений. Кроме лучей Рентгена и других форм ионизирующей радиации, мутации могут быть вызваны самыми различными химическими и физическими воздействиями: температурой, изменением газового режима, влажности и т. п. Любые изменения, затрагивающие процессы обмена веществ, оказывают свое влияние и на мутационный процесс. Результаты исследований по экспериментальному получению мутаций показали, что в основном дело сводится к увеличению их частоты. Экспериментально вызываемые наследственные уклонения совершаются в различных направлениях, так же как и естественный процесс мутационной изменчивости. Лишь в самое последнее время намечаются некоторые пути воздействия на направление мутаций. Эти новые возможности базируются на глубоком проникновении в механизм процесса синтеза нуклеиновых кислот.

Экспериментальное получение мутаций имеет и большое практическое значение, так как резко повышает наследственную изменчивость, давая, таким образом, материал для отбора.

Важная закономерность была установлена Н.И. Вавиловым. Она известна под именем закона гомологических рядов наследственной изменчивости. Сущность этого закона сводится к тому, что виды и роды, генетически близкие (т. е. связанные друг с другом единством происхождения), характеризуются сходными рядами наследственной изменчивости. Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов.

У животных мы также встречаемся с проявлением этой закономерности. Например, у грызунов существуют гомологические ряды по окраске шерсти.

Методы изучения мутаций

1) Метод гибридологического анализа позволяет следить за расщеплением и рекомбинацией маркёров и тем самым сравнительно легко различать хромосомные (ядерные) и внехромосомные (цитоплазматические) мутации. У эукариот первые подчиняются закономерностям наследования при моногибридном скрещивании, так как они проходят через стадию мейоза. У прокариот, лишённых мейоза, наследование совместно с известными сцепленными хромосомами, цитоплазматическими генами служит показателем соответствующей локализации мутации.

2) Цитогенетический метод - исследование строения хромосом под световым микроскопом. Определение мутаций, связанных с крупными хромосомными перестройками.

3) Биохимический метод. Непосредственное отслеживание изменений в последовательностях нуклеотидов в пределах отдельных генов и сравнение их с изменениями в составе и структуре кодируемых ими продуктов.

Раздел 4. Основные типы мутаций и их классификаций

Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) - мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов (биологические, химические, физические). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов.

изменчивость генотип фенотип селекция

Типы мутаций

Генные (точковые) мутации

Затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно - клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидных цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую (вместо глутамина - валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно-клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятная мутация генов происходит при спаривании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.

Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация"- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокислотная последовательность белка не меняется.

Геномные мутации

Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.

Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Этот синдром впервые был лишь обнаружен в 60-ых годах. Вообще полиплодия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие), а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведет практически к 100% смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается еще реже, но так же зачастую приводит к летальному исходу.

Анеуплоидные мутации приводят к изменению числа хромосом в кариотипе, некратные - гаплоидному набору. В результате такой мутации возникают особи с аномальным числом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе.

В целом же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм.

Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др.

Хромосомные мутации

Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:

Дубликация - один из участков хромосомы представлен более одного раза.

Делеция - утрачивается внутренний участок хромосомы.

Инверсия - повороты участка хромосомы на 180 градусов.

Межхромосомные перестройки (их еще называют транслокации) делятся на:

Реципрокные - обмен участками негомологичных хромосом.

Нереципрокные - изменение положения участка хромосомы.

Дицентрические - слияние фрагментов негомологичных хромосом.

Центрические - слияние центромер негомологичных хромосом.

Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распространенный пример - синдром "Кошачьего крика" (плач ребенка напоминает мяуканье кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к патологическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом, а у обезьяны - 24. Таким образом, различие составляет всего одна хромосома. Ученые предполагают, что в процессе эволюции произошла хотя бы одна перестройка. Подтверждением этого может служить и тот факт, что 17 хромосома человека отличается от такой же хромосомы шимпанзе лишь одной перецентрической инверсией. Такие рассуждения во многом подтверждают теорию Дарвина.

Классификация мутаций

Трудности определения понятий «мутация» лучше всего иллюстрирует классификация ее типов.

Существует несколько принципов такой классификации:

По характеру изменения генома:

Геномные мутации -- изменение числа хромосом.

Геномные мутации - это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии - кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не 2, как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия - следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ-мутагенов.

Геномные мутации в животном и растительном мире многообразны, но у человека обнаружены только 3 типа геномных мутаций: тетраплоидия, триплоидия и анеуплоидия. При этом из всех вариантов анеуплоидий встречаются только трисомии по аутосомам, полисомии по половым хромосомам (три-, тетра- и пентасомии), а из моносомий встречаются только моносомия-Х.

Хромосомные мутации, или хромосомные перестройки, -- изменение структуры хромосом.

Хромосомные мутации - это перестройки хромосом. Участки хромосом могут изменить свое положение, потеряться или удвоиться.

Хромосомные мутации - это мутации, нарушающие существующие группы сцепления или приводящие к возникновению новых групп сцепления. Такое определение указывает на способ, которым эти мутации в первую очередь обнаруживаются. Согласно другому определению, хромосомные мутации - это мутации, обусловленные перестройками хромосом. Хромосомные перестройки бывают разных типов. Пожалуй, наиболее распространенная - рекомбинация, или кроссинговер, при котором происходит обмен гомологичными участками хромосом. Другие типы перестроек хромосом - это транслокации, инверсии, делеции и дупликации.

Разнообразны варианты изменения морфологии хромосом. Различают следующие ХП: - Реципрокные транслокации - обмен участками хромосом. - Робертсоновские транслокации - слияние двух акроцентрических хромосом в одну двуплечую хромосому. - Парацентрическая инверсия - изменение порядка генов на обратный в пределах участка, не затрагивающего центромеру. - Перицентрическая инверсия - то же самое, но в пределах участка, включающего центромеру. - Инсерция - встройка дополнительного хромосомного материала в какой-либо участок хромосомы. - Делеция - потеря участка хромосомы ХП приводят к изменениям кариотипа (хромосомные дупликации)

Генетика сливы домашней

слива домашний мутагенез биологический Изменчивость, способность живых организмов приобретать новые признаки и качества. Выражается в бесконечном разнообразии признаков и свойств у особей различной степени родства...

Ель в Сибири

Ель сибирская: шишки маленькие, тем более в неблагоприятных лесорастительных условиях. Семенные их чешуи широкие и закругленные. Женские шишки после опыления красноватые, прямостоячие, при созревании темно-коричневые, висячие...

Ель в Сибири

Ель сибирская: кора темно-серая или почти черная, морщинистая. Ель обыкновенная: кора в молодости гладкая, бурого цвета. К старости становится чешуйчато-шероховатой, серого или коричневого цвета...

Ель в Сибири

Ель сибирская: почки от яйцевидных до овальных, красно-коричневые, несмолистые, почечные чешуйки плотно прилегающие, из них нижние часто имеют шиловидное острие. Ель обыкновенная: Почки 4-5 мм длиной, 3-4 мм шириной, яйцевидно-конусовидные...

Ель в Сибири

Ель сибирская: Густая пирамидальная крона. Верхние ветви однородные, расположены параллельно; нижние густо-лапчатые. Ель обыкновенная: крона - густая, пирамидальная. Ветки - горизонтальные или поникающие, низко опускающиеся по стволу...

Изменчивость организмов

Разнообразные формы и проявления модификационной изменчивости не затрагивают генотипа организма. Наряду с модификациями существует другая форма изменчивости, меняющая генотип...

Комбинативной называют изменчивость, в основе которой лежит образование рекомбинаций, т.е. таких комбинаций генов, которых не было у родителей. В основе комбинативной изменчивости лежит половое размножение организмов...

Классификация изменчивости генетического материала

Мутации - это наследственные изменения генотипического материала. Они характеризуются как редкие, случайные, ненаправленные события. Большая часть мутаций приводит к различным нарушениям нормального развития, некоторые из них летальны...

Морфологическая конституция человека. Проблема связи с психологическими характеристиками личности

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутационная изменчивость - это изменчивость, обусловленная мутациями - качественными и количественными изменениями генотипа...

О соотношении детерминистического и вероятностного в живой и неживой природе

Но при анализе вопроса о хромосомах, был затронут интересный момент о строгой последовательности нуклеотидов в цепи ДНК. Любое отклонение от существующего порядка связи элементов в спирали влечёт за собой изменение и самого кода...

Основные проблемы генетики и роль воспроизводства в развитии живогов развитии живого

генетика наследование мутация клонирование Изменчивостью называют всю совокупность различий по тому или иному признаку между организмами, принадлежащими к одной и той же природной популяции или виду...

Сосна сибирская

Изменчивость - это различия признаков и свойств между двумя или группой особей, предками и потомками одного и того же или разных видов растений. Впервые в 1903 г. Гюго-де-Фриз назвал мутациями внезапное наследственное изменение (Любавская, 1982). 3...

Состояние популяции мнемозины на территории парка

Проведено изучение морфологической изменчивости мнемозины на территории парка на примере самцов по двум показателям: длина тела и длина переднего крыла (таблица 6)...

Модификация микроорганизмов возникает как ответ клетки на неблагоприятные условия ее существования. Это адаптивная реакция на внешние раздражители. Модификация не сопровождается изменением генотипа...

Фенотипическая и генотипическая изменчивость бактерий

Генотипическая изменчивость может возникать в результате мутаций и генетических рекомбинаций. Мутации (от лат. mutatio -- изменять) -- это передаваемые по наследству структурные изменения генов...

Вопрос 1. В чем основные различия между модификациями и мутациями?
Модификационная изменчивость.
Модификационная изменчивость характеризуется следующими основными свойствами:
1.Ненаследуемостью.
Модификационная изменчивость - фенотипическая, т. е. не затрагивает генотипа. Поэтому модификации не передаются из поколения в поколение. Если фактор, ее вызывающий, прекращает свое действие, то через какое-то время модификация может исчезнуть. Мутационная изменчивость представляет собой изменения генотипа, возникающие под влиянием факторов внешней и внутренней среды, относится к генотипической, т. е. мутации передаются из поколения в поколение.
2.Групповым характером изменений.
Модификации носят групповой характер: в одинаковых условиях все особи одного вида изменяются сходным образом. Кроме того, зная, какой фактор действует на группу организмов одного вида, можно предположить, в каком направлении произойдут изменения. Мутации возникают внезапно, ненаправленно, один и тот же мутаген у разных организмов может вызвать разные мутации.
3.Четкой зависимостью направленности изменений от определенного воздействия внешней среды.
Модификации носят адаптивный характер: благодаря им организм приспосабливается к изменившимся условиям среды. Например, загар, образующийся при избыточной инсоляции, служит защитой глубоких слоев кожи и других органов и тканей от сильного ультрафиолетового излучения. Это происходит благодаря пигменту меланину, который на солнце образуется в коже в больших количествах.
4.Нормой реакции - то есть, границы этого вида изменчивости определяются генотипом организма. Границы модификационной изменчивости, контролируемые генотипом организма, называют нормой реакции. Одни признаки (например, молочность скота) - обладают широкой нормой реакции, другие (например, цвет шерсти) - узкой.
Таким образом, можно сказать, что наследуется не сам признак, а способность организма (определяемая его генотипом) продемонстрировать признак в большей или меньшей степени в зависимости от условий существования.
Мутации.
Мутации имеют ряд свойств:
1. возникают внезапно, и мутировать может любая часть генотипа;
2. чаще бывают рецессивными и реже - доминантными;
3. могут быть вредными (большинство мутаций), нейтральными и полезными (очень редко) для организма;
4. передаются из поколения в поколение;
5. представляют собой стойкие изменения наследственного материала;
6. это качественные изменения, которые, как правило, не образуют непрерывного ряда вокруг средней величины признака;
7. могут повторяться.
Мутации же далеко не всегда являются полезными. Часто они вредны для организма и снижают жизнеспособность особи.

Вопрос 2. Какие мутации вы знаете?
Мутации происходят под влиянием как внешних, так и внутренних воздействий. Различают мутации генеративные - они возникают в гаметах и соматические - они возникают в соматических клетках и затрагивают лишь часть тела; последние будут передаваться следующим поколениям только при вегетативном размножении.
По характеру изменений в генотипе мутации подразделяются на несколько видов:
Точечные, или генные мутации. Точечные, или генные мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одного или нескольких нуклеотидов в молекуле ДНК. Например, нарушение в последовательности нуклеотидов АГГЦЦА может быть связано с потерей (АГ_ЦЦА), с добавлением (АГГТЦЦА) или заменой (АГТЦЦА) одного из них. Результатом генных мутаций является образование нового белка. Даже один измененный нуклеотид может оказать большое влияние на жизнеспособность организма. Если новый белок, появившийся при участии мутантного гена, будет силь¬но отличаться по своей структуре и свойствам от первоначального, организм может погибнуть. Несущественные изменения в белке не отразятся на жизнеспособности особи.
Хромосомные мутации. Хромосомные мутации представляют собой изменения частей хромосом или целых хромосом. Такие мутации могут происходить в результате делеции - утраты части хромосомы, дупликации - удвоения какого-либо участка хромосомы, инверсии - поворота участка хромосомы на 180°, транслокации - отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой, негомологичной, хромосоме. Структурные хромосомные мутации, как правило, вредны для организма.
Геномные мутации. Геномные мутации заключаются в изменении (уменьшении либо увеличении) числа хромосом в гаплоидном наборе. Частный случай геномных мутаций - полиплоидия - увеличение числа хромосом в генотипе, кратное п. Это явление возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды часто отличаются мощным ростом, большими размерами. Большинство культурных растений - полиплоиды. Гетероплоидия связана с недостатком или избытком хромосом в одной гомологичной паре. Эти мутации вредны для организма; примером может служить болезнь Дауна, при которой в 21-й паре появляется лишняя хромосома (трисомия по 21-й хромосоме).

Вопрос 3. Чем можно искусственно увеличить число мутаций?
Причины мутаций в природе до конца неясны. Доказано, что мутации можно вызвать путем применения ряда химических агентов (например, иприта, колхицина), под влиянием радиоактивных изотопов, при действии ионизирующего излучения, ультрафиолетом, рентгеновскими лучами. Факторы, вызывающие появление мутаций, называются мутагенами. Способность к мутированию - одно из основных свойств гена. Каждый отдельный ген обладает устойчивостью к действию мутагенных факторов; это явление известно как «стойкость» гена. Однако вследствие того, что генов в организме тысячи, общее число мутаций оказывается значительно. Известно, что у дрозофилы 5 % гамет несут мутации. Говорят, что популяции «насыщены» мутациями.

Вопрос 4. Какие мутации встречаются чаще - полезные или вредные?
Мутации могут быть вредными, нейтральными и полезными. Так как мутации - нарушения отрегулированного в течение миллионов лет естественным отбором генотипа, то в основном они вредны для организма, даже нередко приводят к гибели особи. Иногда мутации могут быть выгодны организму в определенных условиях. Например, на островах часты сильные ветры, и летающие насекомые часто гибнут. В этих условиях благодаря мутациям появились бескрылые формы, кото-рые оказались в более выгодных условиях, чем насекомые с крыльями.

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак - жирность молока - слабо подвержен изменениям условий среды, а масть животного - еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, то есть пределы модификационной изменчивости, называется нормой реакции. Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции - жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и другое. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.
Свойства модификаций:

1) ненаследуемость;

2) групповой характер изменений;

3) соотнесение изменений действию определенного фактора среды;

4) обусловленность пределов изменчивости генотипом.

Генотипическая (наследственная )изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности - генов, влекущие за собой изменения наследственных признаков. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Мутационная изменчивость

Мута́ция (лат. mutatio - изменение) - стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Хуго де Фризом. Процесс возникновения мутаций получил название мутагенеза .

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций - репликация ДНК, нарушения репарации ДНК, транскрипции и генетическая рекомбинация.

Классификация мутаций. Мутации можно объединять, в различные группы, классифицировав по характеру проявления, по месту или, по уровню их возникновения.

Мутации, по характеру проявления, бывают - доминантными и рецессивными . Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными. А несовместимые с жизнью - летальными . Мутации делятся, так же на спонтанные и индуцированные . Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10 -9 – 10 -12 на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими.
Мутации классифицируют по уровню их возникновения. Существуют хромосомные, генные и геномные (изменение кариотипа (изменение числа хромосом)) мутации.

Геномные :

Полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия ) - изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов , у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов , у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

Полиплоидия или увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т.д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды получают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена. Гетероплоидия - изменение числа хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека ссиндромом Дауна оказывается одна лишняя хромосома по 21-й паре, и кариотип такого человека составляет 47хромосом.У людей с синдромом Шерешевского - Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные:

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия) , а также перенос части генетического материала с одной хромосомы на другую (транслокация) , крайний случай - объединение целых хромосом, т. н. Робертсоновская транслокация , которая является переходным вариантом от хромосомной мутации к геномной. (Т.е. при хромосомных мутациях возможен отрыв различных участков хромосомы (делеция), удвоение отдельных фрагментов (дупликация), поворот участка хромосомы на 180°(инверсия) или присоединение отдельного участка хромосомы к другой хромосоме(транслокация))

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные:

затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т.д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот так и у гетерозигот, вторые - только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

Точечная мутация, или единственная замена оснований , - тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

  • Точечные мутации замены оснований . Поскольку в состав ДНК входят азотистые основания только двух типов - пурины и пиримидины, все точечные мутации с заменой оснований разделяют на два класса: транзиции и трансверсии . Транзиция - это мутация замены оснований, когда одно пуриновое основание замещается на другое пуриновое основание (аденин на гуанин или наоборот), либо пиримидиновое основание на другое пиримидиновое основание (тимин на цитозин или наоборот. Трансверсия - это мутация замены оснований, когда одно пуриновое основание замещается на пиримидиновое основание или наоборот). Транзиции происходят чаще, чем трансверсии.
  • Точечные мутации сдвига рамки чтения . Они делятся на делеции и инсерции. Делеции - это мутация сдвига рамки чтения, когда в молекуле ДНК выпадает один или несколько нуклеотидов. Инсерция - это мутация сдвига рамки чтения, когда в молекулу ДНК встраивается один или несколько нуклеотидов.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава.

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Такие мутации называются мишенными мутациями (от слова «мишень»). Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований, так и мишенные мутации сдвига рамки.

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки.

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций. При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество задерживающихся мутаций.

Возможны четыре генетических последствия точковых мутаций:

1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида),

2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация),

3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер - UAG, охр - UAA и опал - UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов - например амбер-мутация),

4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов, мутации, разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift) . Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией , а мутацию, восстанавливающую исходную структуру гена, - обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты ) - стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями.

Свойства мутаций:

1.Мутации возникают внезапно, скачкообразно.

2. Мутации наследственны, то есть стойко передаются из поколения в поколение.

3. Мутации ненаправленные - мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.

4. Одни и те же мутации могут возникать повторно.

5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию - одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Модели мутагенеза

В настоящее время существует несколько подходов для объяснения природы и механизмов образования мутаций. Общепринятой, в настоящее время, является полимеразная модель мутагенеза. Она основана на идее о том, что единственной причиной образования мутаций являются случайные ошибки ДНК-полимераз. В предложенной Уотсоном и Криком таутомерной модели мутагенеза впервые была высказана идея о том, что в основе мутагенеза лежит способность оснований ДНК находиться в различных таутомерных формах. Процесс образования мутаций рассматривается как чисто физико-химическое явление. Полимеразно-таутомерная модель ультрафиолетового мутагенеза опирается на идею о том, что при образовании цис-син циклобутановых пиримидиновых димеров может изменяться таутомерное состояние входящих в них оснований. Изучается склонный к ошибкам и SOS-синтез ДНК, содержащей цис-син циклобутановые пиримидиновые димеры. Существуют и другие модели.

Одна из центральных проблем генетики – выяснение соотносительности генотипа и условий среды обитания при формировании фенотипа организма. Однояйцовые близнецы при развитии в разных условиях отличаются по фенотипу. То есть в данном случае проявляется ненаследственная изменчивость. Ее изучение позволяет выяснить, каким образом наследственная информация реализуется в определенных условиях обитания.
Модификационная изменчивость это изменения признаков организма (его фенотипа), вызванные изменениями условий среды обитания и не связанные с изменением генотипа. Следовательно, модификационные изменения (модификации) – это реакции на изменение интенсивности действия определенных условий среды обитания, одинаковые для всех генотипно однородных организмов.

Степень выраженности модификаций прямо пропорциональна интенсивности и продолжительности действия на организм определенного фактора.

Долгое время велись дискуссии о том, наследуются или не наследуются изменения состояний признаков, приобретенных организмом во время индивидуального развития. То, что модификации не наследуются, доказал немецкий ученый А. Вейсман. На протяжении многих поколений он отрезал мышам хвосты, но у бесхвостых родителей рождались хвостатые потомки.

Как показали многочисленные исследования, модификации могут исчезать на протяжении жизни одной особи, если прекращается действие фактора, вызвавшего их. Например, летний загар исчезает осенью. Некоторые модификации могут сохраняться в течение всей жизни, но потомкам не передаются. Например, рахит сохраняется в течение всей жизни, но потомкам не передается.

Модификационные изменения играют исключительно важную роль в жизни организмов, обеспечивая приспособляемость к изменяющимся условиям среды. Например, линька млекопитающих играет защитную роль, загар защищает от вредного влияния солнечных лучей.

Но не все кодификационные изменения носят приспособительный характер. При попадании организма в непривычные условия. Например, при затенении нижней части стебля картофеля на нем образуются клубни.

Модификационная изменчивость подчиняется статистическим закономерностям. Например, любой признак может менять только в определенных пределах. Эти пределы, обусловленные генотипом организма, называют нормой реакции . Таким образом, данный аллельный ген обуславливает не определенное, кодируемое им состояние признака, а только пределы, в которых оно может изменяться в зависимости от интенсивности действия тех или иных факторов среды обитания. Среди признаков есть такие, состояние которых почти полностью определяется генотипом (расположение глаз, группа крови и т.д.) На степень проявления состояния других признаков (рост, масса организма) значительное влияние оказывают условия среды обитания.

Исследования показали, что норма реакции для определенных признаков имеет различные пределы. Наиболее узкая норма реакции у признаков, определяющих жизнеспособность организмов (например, расположение внутренних органов), а для признаков, не имеющих такого значения, она может быть более широкой (масса, рост…)

Для изучения изменчивости определенного признака составляют вариационный ряд последовательность вариант – количественных показателей проявления состояний определенного признака, расположенных в порядке их возрастания или убывания. Длина вариационного ряда свидетельствует о размахе модификационной изменчивости. Она обусловлена генотипом организмов (нормой реакции), однако зависит и от условий окружающей среды: чем стабильнее будут условия существования организмов, тем короче буде вариационный ряд, и наоборот.

Если проследить распределение отдельных вариант внутри вариационного ряда, то можно отметить, что наибольшее их количество расположено в средней его части, то есть имеет среднее значение определенного признака. Такое распределение объясняется тем, что минимальные и максимальные значения развития признака формируется тогда, когда большинство факторов окружающей среды действует в одном направлении: наиболее или наименее благоприятном. Но организм, как правило, ощущает разное их влияние: одни факторы способствуют развитию признака, другие наоборот тормозят, поэтому степень его развития у большинства особей вида усредненная. Таек, большинство людей имеют средний рост и только некоторая их часть – гиганты или карлики.

Распределение вариант внутри вариационного ряда изображается в виде вариационной кривой. Вариационная кривая – это графическое изображение изменчивости определенного признака, иллюстрирующее как размах изменчивости, так и частоту встречаемости отдельных вариант. С помощью вариационной кривой можно установить средние показатели и норму реакции того или иного признака.

Кроме ненаследственной модификационной изменчивости существует и наследственная, связанная с изменением в генотипе. Наследственная изменчивость может быть комбинативной и мутационной.

Комбинативная изменчивость связана с возникновением разных комбинаций аллельных генов (рекомбинаций ). Источником комбинативной изменчивости являются конъюгация гомологичных хромосом в профазе и их независимое расхождение в анафазе первого деления мейоза, а также случайное сочетание аллельных генов при слиянии гамет. Следовательно, комбинативная изменчивость, обеспечивающая разнообразие комбинаций аллельных генов, обеспечивает и появление особей с разными сочетаниями состояний признаков. Комбинативная изменчивость наблюдается и у организмов, размножающихся бесполым путем или вегетативно.

Мутации - это внезапно возникающие стойкие изменения генотипа, приводящие к изменению тех или иных наследственных признаков организма . Основы учения о мутациях заложены голландским ученым Гуго де Фризом, который и предложил этот термин.

Способность к мутациям - универсальное свойство всех организмов. Мутации могут возникать в любых клетках организма и вызывать любые изменения генетического аппарата и, соответственно, фенотипа. Мутации, возникающие в половых клетках организма, наследуются при половом размножении, а в неполовых клетках – наследуются только при бесполом или вегетативном размножении.

В зависимости от характера влияния на жизнедеятельность организмов различают летальные, сублетальные и нейтральные мутации. Летальные мутации , проявляясь в фенотипе, вызывают гибель организмов до момента рождения или завершения периода их развития. Сублетальные мутации снижают жизнеспособность организмов, приводя к гибели части из них (от 10 до 50%), а нейтральные в данных условиях не влияют на жизнеспособность организмов. Вероятность того, что возникшая вновь мутация окажется полезной, незначительна. Но в некоторых случаях, особенно при изменении условий среды обитания, нейтральные мутации могут оказаться для организма полезными.

В зависимости от характера изменений генетического аппарата различают мутации геномные, хромосомные и генные.

Геномные мутации связаны с кратным увеличением или уменьшением хромосомных наборов. Увеличение их количества, приводящее к полиплоидии , наиболее часто наблюдается у растений, иногда у животных (т.к. такие организмы погибают или неспособны к размножению).

Полиплоидия может возникать разными путями: удвоением количества хромосом, не сопровождающимся последующим делением клетки, образованием гамет с неуменьшенным количеством хромосом в результате нарушения процесса мейоза. Причиной полиплоидии также может быть слияние неполовых клеток или их ядер.

Полиплоидия приводит к увеличению размеров организмов, интенсификации процессов их жизнедеятельности и повышению продуктивности. Это объясняется тем, что интенсивность биосинтеза белков зависит от количества гомологичных хромосом в ядре: чем из больше, тем больше за единицу времени образуется молекул белка каждого вида. Однако полиплоидия может сопровождаться снижением плодовитости вследствие нарушения процесса мейоза: у полиплоидных организмов могут образовываться гаметы с разным количеством наборов хромосом. Как правило, такие гаметы не способны сливаться.

Полиплоидия играет важную роль в эволюции растений как один из механизмов образования новых видов. Ее используют в селекции растений при выведении новых высокопродуктивных сортов, например, мягкой пшеницы, сахарной свеклы, садовой землянки и т.д.

Мутации, связанные с уменьшением количества наборов хромосом, приводят к прямо противоположным последствиям: гаплоидные формы оп сравнению с диплоидными имеют меньшие размеры, у них снижается продуктивность и плодовитость. В селекции такой тип мутаций. Используют для получения форм, гомозиготных по всем генам: сначала получают гаплоидные формы, а затем количество хромосом удваивают.

Хромосомные мутации связаны с изменением количества отдельных гомологичных хромосом или в их строении. Изменение количества гомологичных хромосом по сравнению с нормой оказывает значительное влияние на фенотип мутантных организмов. При этом отсутствие одной или обеих гомологичных хромосом влияет более отрицательно на процессы жизнедеятельности и развитие организма, чем появление дополнительной хромосомы. Например, зародыш человека с хромосомным набором 44А+Х развивается в женский организм со значительными отклонениями в строении и жизненных функциях (крыловидная складка кожи на шее, нарушение формирования костей, кровеносной и мочеполовой системы), зародыш же с набором 44А+ХХХ развиваются в женский организм, лишь незначительно отличающийся от нормального. Появление третьей хромосомы в 21 паре вызывает болезнь Дауна.

Возможны и различные варианты перестройки строения хромосом: потеря участка, изменение последовательности генов в хромосоме и т.д. При потере участка хромосома становится короче и лишается некоторых генов. В результате у гетерозиготных организмов в фенотипе могут проявиться рецессивные аллели. В других случаях в хромосому встраивается дополнительный фрагмент, принадлежавший гомологичной хромосоме. Ткой тип мутаций проявляется в фенотипе редко.

При хромосомных перестройках, связанных с изменением последовательности расположения генов, участок хромосомы, образовавшийся в результате двух разрывов, поворачивается на 180 о и с помощью ферментов вновь в нее встраивается. Такой тип мутаций часто не влияет на фенотип, поскольку количество генов в хромосоме остается неизменным.

Встречается также обмен участками между хромосомами разных пар, а также встраивание в определенный участок хромосомы несвойственного ей фрагмента.

Общей причиной мутаций, связанных с изменением строения и числа хромосом, может быть нарушение процесса мейоза, в частности, конъюгации гомологичных хромосом.

Генные мутации – это стойкие изменения отдельных генов, вызванные нарушением последовательности нуклеотидов в молекулах нуклеиновых кислот (выпадение или добавление отдельных нуклеотидов, замена одного нуклеотида другим и т.д.). Это наиболее распространенный тип мутаций, который может затрагивать любые признаки организма и длительное время передаваться из поколения в поколение. Различные аллели имеют разную степень способности к изменению структуры. Различают стойкие аллели, мутации которых наблюдаются относительно редко, и нестойкие, мутации которых происходят значительно чаще.

Генные мутации могут быть доминантными, субдоминантными (проявляющимися частично) и рецессивными. Большинство генных мутаций рецессивны, они проявляются только в гомозиготном состоянии и поэтому выявить их довольно сложно.

В естественных условиях мутации отдельных аллелей наблюдаются достаточно редко, но поскольку организмы имеют большое число генов, то и общее количество мутаций также велико. Например, у дрозофилы примерно 5% намет несут разнообразные мутации.

Причины мутаций долго оставались невыясненными. И только в 1927 году сотрудник Т. Моргана – Г. Меллер установил, что мутации можно вызывать искусственно. Действуя рентгеновскими лучами на дрозофилу, он наблюдал у них разнообразные мутации. Факторы, способные вызывать мутации, называются мутагенными .

По происхождению они бывают химическими, физическими и биологическими. Среди физических мутагенов наибольшее значение имеют ионизирующие излучения, в частности, рентгеновское. Проходя через живое вещество, рентгеновские лучи выбивают электроны из внешней оболочки атомов или молекул, в результате чего те становятся заряженными положительно, а выбитые электроны продолжают этот процесс, вызывая химические преобразования различных соединений живых организмов. К физическим мутагенам относятся также ультрафиолетовые лучи (влияют на химические реакции, вызывая генные, реже – хромосомные мутации), повышенная температура (увеличивается количество генных мутаций, а при повышении до верхнего предела – и хромосомных) и другие факторы.

Химические мутагены были открыты позднее физических. Значительный вклад в их изучение внесла украинская школа генетиков, возглавляемая академиком С. М. Гершензоном. Известно множество химических мутагенов и ежегодно открываются все новые и новые. Например, алкалоид колхицин разрушает веретено деления, что приводит к удвоению количества хромосом в клетке. Иприт повышает частоту мутаций в 90 раз. Химические мутагены способны вызывать мутации всех типов.

К биологическим мутаге нам относятся вирусы. Установлено, что в клетках, пораженных вирусами, мутации наблюдаются значительно чаще, чем в здоровых. Вирусы, вызывая как генные, так и хромосомные мутации, вводя определенное количество собственной генетической информации в генотип клетки – хозяина. Считается, что эти процессы играли важную роль в эволюции прокариот, поскольку вирусы могут переносить генетическую информацию между клетками различных видов.

Спонтанные (непроизвольные) мутации возникают без заметного влияния мутагенных факторов, например, как ошибки при воспроизведении генетического кода. Их причины еще окончательно не выяснены. Ими могут быть: естественный радиационный фон, космические лучи, достигающие поверхности Земли и т.д.

Живые организмы способны определенным образом защищать свои гены от мутаций. Например, большинство аминокислот закодировано не одним, а несколькими триплетами; многие гены в генотипе повторяются. Защитой от мутаций также служит удаление измененных участков из молекулы ДНК: с помощью ферментов образуются два разрыва, мутировавший участок удаляется, а на его место встраивается участок с присущей этой части молекулы последовательностью нуклеотидов.

Способность к мутациям присуща всем живым организмам. Они возникают внезапно, а вызванные мутациями изменения устойчивы и могут наследоваться. Мутации могут быть вредными, нейтральными или, очень редко, полезными для организма. Мутагены универсальны, то есть они могут вызвать мутации у любого вида организмов. В отличие от модификаций, мутации не имеют определенной направленности: один и тот же мутагенный фактор, действующий с одинаковой интенсивностью на идентичные в генетическом отношении организмы, может вызвать у них разные типы мутаций. Вместе с тем, различные мутагены могут вызывать у далеких в генетическом отношении организмов одинаковые наследственные изменения. Степень выраженности мутационных изменений в фенотипе не зависит от интенсивности и продолжительности действия мутагенного фактора. Так, слабый мутагенный фактор, действующий непродолжительное время, способен иногда вызвать более значительные изменения в фенотипе, чем более сильный. Однако с увеличением интенсивности действия мутагенного фактора частота мутаций возрастает до определенного уровня.

Для всех мутагенных факторов не существует нижнего предела их действия, то есть такого предела, ниже которого они не способны вызывать мутации. Это свойство мутагенных факторов имеет важное теоретическое и практическое значение, поскольку свидетельствует о том, что генотип организмов необходимо защищать от всех мутагенных факторов, какой бы низко ни была интенсивность их действия.

Различные виды живых организмов и даже разные особи одного вида неодинаково чувствительны к действию мутагенных факторов.

Значение мутаций в природе состоит в том, что они являются основным источником наследственной изменчивости – фактора эволюции организмов. Благодаря мутациям появляются новые аллели – мутантные . Большинство мутаций вредны для живых существ, поскольку они снижают их приспособленность к условиям обитания. Однако нейтральные мутации при определенных изменениях окружающее среды могут оказаться полезными.

Мутации широко используются в селекции, так как позволяют увеличить разнообразие исходного материала и повысить эффективность селекционной работы.

Выдающийся российский генетик Н. И. Вавилов сформулировал закон гомологических рядов : генетически близкие виды и роды характеризуются сходными рядами наследственной изменчивости с такой правильностью, что, зная ряд форм в пределах одного вида или рода, можно предвидеть наличие форм с подобным сочетанием признаков в пределах близких видов или родов. При этом, чем более тесные родственные связи меду организмами, тем более схожи ряды их наследственной изменчивости. Эта закономерность, выявленная Вавиловым у растений, оказалась универсальной для всех организмов. Генетической основой данного закона является то, что степень исторического родства организмов прямо пропорциональна количеству их общих генов. Поэтому и мутации этих генов могут быть сходными. В фенотипе это проявляется одинаковым характером изменчивости многих признаков у близких видов, родов и других таксонов.

Закон гомологических рядов объясняет направленность исторического развития родственных групп организмов. Опираясь на него и изучив наследственную изменчивость близких видов, в селекции планируют работу по созданию новых сортов растений и пород животных с определенным набором наследственных признаков. В систематике организмов этот закон позволяет предвидеть существование неизвестных науке систематических групп, если формы с подобными сочетаниями признаков выявлены в близкородственных группах.

28-02-2014, 12:41

В естественных условиях стабильность живых организмов не всегда абсолютна. У них наблюдаются случаи изменения фенотипа (чаще) и генотипа (реже), которые придают им способность взаимодействия: генотип - среда.
Процесс неожиданного (скачкообразного) изменения генетических структур организма или отдельного гена получил название мутации (от лат. mutare - изменять, менять). Организмы, растения, которые получили такие изменения и которые отличаются от исходного типа, называются мутантами.
Мутанты были известны давно. Так, по X. Шмальцу, немецкий аптекарь Шпренгер в 1590 году выделил мутантную форму с ланцетовидными листьями из чистотела; китайский император Канг-Хи - “рис императора”, дающий два урожая в год; „спорты” Ч. Дарвина и др. Однако импульс мутационным исследованиям дал один из трех первооткрывателей менделеевских правил наследования Гуго де-Фриз.
В книге „Мутации и периоды мутаций при происхождении видов” Г. де-Фриз изложил теорию мутационной изменчивости видов, суть которой заключалась в том, что виды появляются не постепенно под влиянием внешней среды, а одним прыжком, независимо от условий существования и друг от друга. Единственным источником новых наследственных изменений организмов являются мутации, которые возникают внезапно, скачкообразно.
Это утверждение привело к тому, что многие исследовали выявили и описали ряд мутаций как среди растений, так и среди животных.
Было установлено, что в природе возникают как большие (морфологически различные) мутации, так и малые (фенотипически не проявляющиеся). Последние встречаются во много раз чаще, чем большие. Было также установлено, что большие мутации почти никогда не давали начало новым видам, так они являются недостаточно приспособленными к внешним условиям, поэтому не могли успешно выдерживать конкуренцию с исходными формами. Малые же мутации, создаваемые и закрепляемые естественным отбором, давали начало новым формам, хорошо приспособленным к окружающей среде и постепенно превращались в новые виды.
Мутации в природе могут возникать внезапно без видимых на то причин: под воздействием высокой или низкой температуры, накоплением мутагенных продуктов обмена веществ при длительном хранении семян, действием излучений высокой энергии, которая всегда присутствует во внешних условиях среды вследствие естественной радиоактивности некоторых химических элементов или космического излучения из мирового пространства. Такие мутации получили название спонтанные.
Частота возникновения спонтанных мутаций в природе очень незначительная, примерно 1:1000000, и зависит как от генотипа, так и от физиологических и биохимических изменений, проходящих в клетке под влиянием внешних условий, в которых развивается организм. Это находит подтверждение в фактах экспериментального мутагенеза, когда под действием некоторых внешних условий число мутаций увеличивается в сотни раз.
Спонтанные мутации по действию на жизнеспособность и плодовитость делятся на четыре группы:
- летальные, вызывающие гибель организма (гибель зародыша; неспособность к образованию корневой системы; к образованию хлорофилла и т.д.);
- сублетальные, понижающие жизнеспособность организма. Для них характерно, что мутанты в течение некоторого времени живут, но затем гибнут из-за наследственного дефекта;
- стерильные мутации не способны к оплодотвррению;
- нормальные мутации, которые не изменяют жизнеспособность и плодовитость организма, а иногда и существенно их повышающие.
Природа происхождения спонтанных мутаций, причины их появления долгое время после Г. де-Фриза оставались неизвестны. Многие ученые считали, что причины возникновения мутаций заложены в самом организме.
Однако, в 1925 году в Ленинградском радиевом институте Г. Надсон и Г. Филиппов впервые получили мутации у грибов под влиянием лучей радия. Через два года, в 1927 году американский генетик Г. Меллер опубликовал работу „Искусственные трансмутации гена”, в которой сообщалось о значительном повышении частоты мутаций у дрозофилы при облучении ее лучами рентгена. Эти открытия, а несколько позже, Э. Баур и Г. Штуббе, показали, что наследственные изменения мутации у растений можно вызывать экспериментальным путем воздействием внешних условий.
Процесс получения мутаций под воздействием внешних условий получил название индуцированный (искусственный) мутагенез.
Внешние условия, вызывающие мутации, были названы мутагенными факторами или просто мутагенами.
Мутагенные факторы (мутагены) делятся на:
- физические: радиоволны, свет (инфракрасные лучи, ультрафиолетовый свет), рентгеновские лучи и т.д.;
- химические: большое число органических и неорганических соединений (этиленамин - ЭИ; диэтилсульфат - ДЭС; диметилсульфат - ДМС; нитрозоэтилмочеивна - НЭМ; нитрозометилпочевина - HMM и др.).
Воздействие мутагенов во времени может быть: однократным; с опредленными интервалами; и хроническим.
Многообразное действие физических и химических мутагенов вызывают различные типы мутаций (табл. 5.8).

Для практической селекции наибольшее значение имеют генная и геномная (полиплоидия) мутации. Остальные типы мутаций большей частью, используются в научных исследованиях, которые через определенное время могут также оказаться практически очень важными.
Так как между генными (тип 1) и геномными (тип 4) мутациями имеются принципиальные различия, касающиеся способов их получения, поэтому их практическое использование относится к двум селекционным направлениям:
- мутационной селекции, основанной на индуцировании генных мутаций;
- селекции на основе генома, или кратном увеличении наборов хромосом (полиплоидия).
Мутации могут возникать во всех клетках растения. Ho мутировавший аллель может быть передан по наследству следующему поколению лишь в том случае, если мутация произойдет в половой клетке (гамете). Такие мутации называются генеративными. Если же мутация произойдет в соматических клетках, то передача по наследству может произойти только у растений, размножающихся вегетативным способом. Такие мутации получили название соматические.
У плодовых растений хорошо изучены почковые (спортовые) мутации.
Установлено, что измененные в результате мутационного процесса гены, наследуются также стабильно, как и до возникновения мутации. Однако измененные гены сами могут мутировать вновь, причем даже вернуться в исходное состояние:

Этот процесс называют обратной мутацией. Поэтому мутации бывают прямыми и обратными.
Большинство мутаций, как спонтанные, так и индуцированные, являются рецессивными по отношению к исходному состоянию. Отсюда, если скрестить образованный мутант с исходной формой, то растение F1 практически всегда будут похожи на исходную форму.
К мутационной (генной) селекции селекционеры прибегают лишь в том случае, когда у хорошо известного и перспективного сорта необходимо улучшить какой-нибудь отдельный признак. Например, у пшеницы улучшить хлебопекарные качества зерна, повысить зимостойкость, устойчивость к полеганию, болезням и т.д.
Схему селекционной программы мутационной селекции можно представить в следующей последовательности (рис. 5.29).

Первый год. Выбор сорта для облучения. Облучение достаточно большого количества семян одной или несколькими дозами (или оптимальной); высев облученных семян (раздельно); индивидуальное наблюдение и раздельная уборка растений; анализ растений (M1).
Второй год. Выращивание потомств всех убранных растений в M1 в качестве семей M2 (не менее 20 растений на каждую семью). Тщательное наблюдение за развитием всех семей в М2 и отбор измененных по какому-нибудь признаку растений (т.е. мутантов). Индивидуальный внешний анализ и обмолот, (а если необходимо, проводят химический анализ по определению какого - либо вещества).
M4-M6 испытание мутантов на урожайность, устойчивость к полеганию и другие полезные признаки.
Третий год. Выращивание отобранных мутантов в M2 по семьям. Тщательное наблюдение для определения константности мутанта в сравнении с исходным сортом. Мутанты, сохранившие изменения в M3 в такой степени, как и в поколении M2 отбираются и включаются в предварительное испытание с целью определения их ценности.
Четвертый и последующий годы. Сравнение и оценка мутантных линий в отношении хозяйственно-ценных признаков. К дальнейшему испытанию и размножению оставляют только выделившиеся мутанты с хорошо выраженными ценными признаками и свойствами.
При необходимости, облучение семян, собранных в разных поколениях мутантов (M1-3), можно повторить (многократное облучение или химическая обработка). При этом выход мутантов с каждым облучением возрастает, так как чувствительность растений к мутагенам повышается от одного поколения к другому, поэтому при повторных облучениях дозы мутагенов необходимо уменьшать.
Следует также отметить, что гетерозиготные (гибриды) растения, по данным многих исследователей, обладают большей мутабильностью, чем гомозиготные. У них сравнительно чаще встречаются микромутации и реже макромутации. Однако отбор микромутаций более технически трудной, чем макромутацией. Первые можно обнаружить только путем тщательных наблюдений или анализа мутантных растений (например, подсчетом числа зерен в колосе, индивидуальной оценкой каждого растения на устойчивость к полеганию, болезням и т.д.).
Ген, вызывавший определенные изменения, может затруднить некоторые биохимические процессы как в клетке, так и в целом организме (например, обмен веществ). Такое изменение, в свою очередь, может вызвать изменение другого гена (признака), т.е. один ген окажет влияние на другой. Такое взаимодействие является основой действия всех генетических структур живого организма, которое Менделем было названо плейотропией , а Ч.Дарвин - параллельной изменчивостью.
Позже Н. Вавилов, изучая многообразие видов растений, обнаружил что все виды растений имеют параллельную изменчивость. Например, пшеница группируется в четыре генетические группы, различаемые по числу хромосом (2n=14, 28, 42, 56). Каждая группа представлена множеством разновидностей и рас, разделенных по признакам: 1) остистые, безостые, полунифлятные, с изогнутыми зубцами и т.д.; 2) белоколосые, красноколосые, сероколосые и т.д.; 3) с опушенными и неопушенными, чешуями, стержнем и т.д.; 4) белозерные, краснозерные и т.д.; 5) озимые, яровые, двуручки (рис. 5.30.).

Проанализовав все это разнообразие Н. Вавилов обнаружил, что мутационная изменчивость имеет определенную закономерность, которая позволила сформировать закон гомологических рядов.
Параллельная изменчивость и закон гомологических рядов выражают примерно одинаковое значение. Первое понятие означает, что в разных ботанико-систематических группах растений с одинаковой или сходной наследственностью изменчивость протекает также сходным образом (между наследственностью и изменчивостью наблюдается параллелизм).
Под гомологическими рядами понимаются ряды изменчивости у различных видов растений, характеризующихся определенным сходством у генотипически близких видов. Например, остистость, безостость, полуостистость обнаруживается у мягкой и твердой пшениц, ячменя и ржи.
Таким образом, подводя итоги мутационной селекции, можно суммировать ее положительные стороны:
1. Каждое новое наследственное изменение может быть началом нового организма, вида и т.д. Возникновение новых мутаций происходит постепенно, следующих одна с другой с обязательным закреплением новых форм путем естественного или искусственного отбора. Следовательно, селекция растений есть не что иное, как эволюция, управляемая волей человека.
2. Используя мутационную селекцию, можно быстрее добиться успеха в изменении определенного признака. Это обосновано тем, что мутационная селекция гетерозиготная по многим признакам.
3. Мутационная селекция позволяет создавать исходный материал для комбинационной селекции, т.к. с помощью мутагенов можно индуцировать отдельные признаки, недостающие у ценных сортов, например, устойчивость к полеганию.