Как регулируется активность ферментов? Регуляция действия ферментов: аллостерические механизмы, химическая (ковалентная) модификация. Белок-белковые взаимодействия. Примеры метаболических путей, регулируемых этими механизмами. Физиологическое значение рег

Активность ферментов может изменяться под влиянием различных внешних факторов. Вещества, способные оказывать влияние на активность ферментов, обозначают как модуляторы ферментов . В свою очередь модуляторы подразделяют на две группы:

1. Активаторы . Под их влиянием происходит увеличение активности ферментов. В качестве активаторов могут выступать катионы металлов. Например, Na + является активатором амилазы слюнных желез человека.

2. Ингибиторы. Вещества, под влиянием которых происходит уменьшение активности ферментов.

Ингибиторы представляют большую группу веществ, которые различаются по механизму ингибирующего действия.

По продолжительности ингибирующего эффекта ингибиторы подразделяются на:

· необратимые (которые при взаимодействии с ферментом навсегда лишают его ферментативной активности);

· обратимые (которые временно уменьшают активность фермента).

Механизм действия необратимых ингибиторов можно описать следующим уравнением:

In + E EIn ,

где EIn – комплекс фермента с ингибитором, в котором он не обладает каталитическими свойствами.

Как правило, необратимые ингибиторы взаимодействуют с функциональными группами активного центра фермента. Они ковалентно соединяются с ними и, таким образом, блокируют их. В результате этого фермент утрачивает способность взаимодействовать с субстратом.

Классическим примером необратимых ингибиторов являются фосфорорганические вещества. В течение многих лет в качестве такового в биохимических исследованиях используется диизопропилфторфосфат (ДФФ). Фосфорорганические соединения соединяются с остатком серина в активном центре фермента:



К ферментам, которые содержат в активном центре серин, относятся холинэстераза, трипсин, эластаза и др.

В качестве других необратимых ингибиторов широкое применение находят алкилирующие агенты. Эти соединения взаимодействуют с SH-группами цистеина или имидазальными радикалами гистидина в активном центре. Механизм необратимого ингибирования ферментов иодацетамидом:

В качестве алкилирующих агентов как необратимых ингибиторов в биохимии находят применение иодацетамид, монойодацетат и др.

Явление необратимого ингибирования используется в народном хозяйстве и медицине. На нем основано применение инсектицитов (средств для борьбы с насекомыми), некоторых лекарственных препаратов (антихолинестеразные средства). На их основе созданы боевые отравляющие вещества нервно-паралитического действия из группы фосфорорганических соединений.

В отличие от ингибиторов необратимого действия обратимые ингибиторы лишь на определенный промежуток времени понижают активность ферментов. Механизм их ингибирующего эффекта можно представить в виде следующих уравнений реакций:

In + E EIn

In + ES ESIn

Как следует из представленных уравнений реакций, обратимые ингибиторы обратимо присоединяются к ферменту или фермент-субс-тратному комплексу. При этом фермент утрачивает свои каталитические свойства.

Обратимые ингибиторы по механизму ингибирующего эффекта подразделяются на конкурентные инеконкурентные, которые отличаются друг от друга по механизму ингибирующего действия на фермент.

В случае неконкурентного ингибирования ингибитор обратимо присоединяется к ферменту не в его активном центре. В этом случае меняется конформация активного центра, что приводит к обратимой инактивации энзима. Под влиянием конкурентного ингибитора не происходит изменения сродства фермента к его субстрату, т.е. не изменяется величина К м, но понижается максимальная скорость ферментативной реакции (V max). В качестве неконкурентных ингибиторов могут выступать промежуточные продукты обмена веществ.

Молекулы конкурентных ингибиторов имеют определенное сходство с истинным субстратом фермента. Классическим примером конкурентных ингибиторов является малоновая кислота, которая обратимо понижает активность фермента сукцинатдегидрогеназы.

Янтарная кислота Малоновая кислота

Из представленных формул видно, что малоновая кислота действительно сильно напоминает по строению янтарную. Структурное сходство позволяет малоновой кислоте связываться с активным центром фермента сукцинатдегидрогеназы. Однако это соединение не способно вступать в реакцию, катализируемую данным ферментом (реакцию дегидрирования). Поэтому ингибитор присоединяется к активному центру фермента, блокируя тем самым возможность его взаимодействия с истинным субстратом. Таким образом, под влиянием конкурентного ингибитора резко понижается срод-ство фермента к субстрату (возрастает величина К м), но не меняется величина V max . Явление конкурентного ингибирования может быть снято путем резкого повышения концентрации субстрата в реакционной смеси.

Таким образом, конкурентные ингибиторы в отличие от неконкурентных связываются с активным центром фермента, вследствие чего наступает резкое повышение величины К м к субстрату, что и лежит в основе обратимого понижения его активности.

В качестве физиологического конкурентного ингибитора сукцинатдегидрогеназы выступает щавелево-уксусная кислота. Как видно из представленного рисунка, этот промежуточный продукт обмена веществ также имеет определенное структурное сходство с янтарной кислотой. Конкурентное ингибирование сукцинатдегидрогеназы щавелево-уксусной кислотой играет важную роль в регуляции окислительно-восстановительных превращений в митохондриях:

Существует еще один вид регуляции активности ферментов – аллостерическая регуляция . Он характерен для особой группы энзимов – аллостерических ферментов . К аллостерическим ферментам относятся олигомерные белки, в структуре которых имеются регуляторные (аллостерические) центры.

В составе молекул аллостерических ферментов выделяются два типа субъединиц:

1) каталитические (С );

2) регуляторные (R ).

Каталитические субъединицы представлены полипептидной цепью, на которой находится активный центр фермента. Регуляторные субъединицы содержат в своей структуре регуляторный (аллостерический) центр. Аллостерический центр представляет собой участок молекулы, способный специфически взаимодействовать с регулятором фермента. Соответственно регуляторы могут выступать в роли как активаторов, так и ингибиторов фермента.

Связывание аллостерического регулятора с регуляторным центром происходит за счет стерического соответствия его молекулы аллостеричес-кому центру. Ввиду геометрического сходства поверхности молекулы регулятора и трехмерной структуры аллостерического центра между ними происходит обратимое специфическое взаимодействие. Образуется комплекс, который стабилизируется силами слабых взаимодействий. Особое значение при этом приобретают Ван-дер-Ваальсовы силы. Помимо них, в стабилизации комплекса регулятора с аллостерическим центром участвуют водородные связи, а также гидрофобные и электростатические взаимодействия.

В результате взаимодействия фермента с аллостерическим ингибитором в молекуле белка возникают конформационные сдвиги в полипептидной цепи регуляторной субъединицы. Их возникновение сказывается на взаимодействии С - и R -субъединиц. В результате этого вторично изменяется конформация полипептидной цепи каталитической субъединицы. Подобная перестройка сопровождается возникновением сдвигов в структуре активного центра, следствием чего служит понижение сродства активного центра к субстрату (повышение величины К м), что и предопределяет ингибирование фермента (рис. 33).

Рисунок 33 – Механизм аллостерического ингибирования фермента

Присоединение аллостерического ингибитора к аллостерическому центру приводит к изменению конформации активного центра на каталитической субъединице фермента и понижению его сродства к субстрату.

Аллостерическое ингибирование является обратимым. Диссоциация комплекса R -субъединицы с ингибитором сопровождается восстановлением исходной конформации полипептидных цепей субъединиц, в результате чего сродство активного центра к субстрату восстанавливается.

Очень часто в роли аллостерических ингибиторов выступает продукт реакции или метаболического пути, в котором участвует фермент. Процесс ингибирования фермента продуктом реакции называетсяретроингибированием .

Ретроингибирование лежит в основе механизма отрицательной обратной связи в регуляции обменных процессов и поддержании гомеостаза. За счет него обеспечивается поддержание постоянного уровня различных промежуточных продуктов обмена веществ в клетках. Примером ретроингибирования может служить ингибирование гексокиназы продуктом реакции глюкозо-6-фосфатом:

В некоторых случаях ингибирование происходит не за счет конечного продукта реакции, а конечного продукта процесса, в котором происходит реакция. Ретроингибирование фермента Е продуктом процесса Р:

где Б, В, Г, Д – промежуточные продукты.

В представленной последовательности превращений в качестве аллостерического ингибитора фермента Е выступает продукт процесса – Р . Подобный механизм ретроингибирования широко встречается в клетках. В качестве примера можно привести ингибирование фермента ацетил-КоА-карбоксилазы, принимающего участие в синтезе высших жирных кислот, конечным продуктом синтеза жирных кислот – пальмитиновой кислотой.

Аналогичным, но противоположным образом действуют на аллостерические ферменты аллостерические активаторы . В отсутствии активатора фермент имеет низкое сродство к субстрату. Однако при соединении ал-лостерического центра с активатором происходит повышение сродства каталитического центра к субстрату, что сопровождается повышением скорости превращения субстрата. В качестве аллостерических активаторов часто выступает молекула субстрата реакции. В этом заложен глубокий биологический смысл. В условиях, когда в клетке возрастает содержание субстрата, для поддержания постоянства внутренней среды появляется необходимость в его утилизации. Это достигается за счет активации фермента, который катализирует его превращение. Примером подобной активации может быть активация глюкокиназы глюкозой.

Аллостерические ферменты, у которых субстрат выступает в роли активатора называются гомотропными. На этих ферментах имеется несколько одинаковых по строению центров связывания субстрата, которые в зависимости от условий могут выполнять функцию и регуляторных, и каталитических центров фермента.

Как противоположность гомотропным ферментам существуют гетеротропные энзимы. Последние регулируются модуляторами, структура которых отличается от субстрата. Поэтому в их структуре выделяются существенно различающиеся по строению активный и аллостерический центры.

Очень часто один и тот же аллостерический фермент оказывается способным взаимодействовать с несколькими различными модуляторами – активаторами и ингибиторами. В качестве примера можно привести фермент – фосфофрктокиназу (ФФК), которая катализирует следующую реакцию:

При этом разные модуляторы, как правило, имеют свои участки связывания на молекуле фермента.

Кинетика гомотропных ферментов отличается от кинетики неаллостерических энзимов. График зависимости скорости реакции от концент-рации субстрата имеет у них не гиперболическую, а сигмовидную форму (рис. 34).

Рисунок 34 – Кинетика гомотропных ферментов

По этой причине для расчета К м у них неприемлемо уравнение Михаэлиса-Ментен.

Сигмовидный характер кинетики аллостерических ферментов связан с особым – кооперативным характером взаимодействия отдельных субъединиц энзима с субстратом. Связывание каждой следующей молекулы субстрата с участком связывания способствует возникновению конформационных перестроек в соседних субъединицах, следствием чего становится повышение их сродства к субстрату.

Изоферменты

Важное значение в обеспечении эффективного течения обменных процессов в клетках имеют изоферменты . Изоферменты представляют собой генетически детерминированные множественные формы фермента, катализирующие одну и ту же реакцию, но имеющие разную структуру и физико-химические свойства.

Типичным ферментом, который представлен изоферментами, является лактатдегидрогеназа (ЛДГ). Этот энзим катализирует следующую реакцию.

При электрофорезе сыворотки крови человека в крови выявляется пять различных белковых фракций, которые обладают способностью катализировать лактатдегидрогеназную реакцию. Таким образом, можно прийти к заключению о существовании пяти изоферментов ЛДГ (рис. 35).

Рисунок 35 – Распределение изоферментов ЛДГ на электрофорерограмме (электрофорез проводится при рН 6,8)

Важное значение в объяснении феномена существования изоферментов имеет тот факт, что изоферменты встречаются только у ферментов – олигомерных белков. Их молекула состоит не меньше чем из двух субъединиц.

Что касается ЛДГ, то этот фермент представляет собой тетрамер, т.е. в его молекулу входит четыре отдельные субъединицы. При этом существует два различных типа субъединиц ЛДГ – М-тип (мышечный) и Н-тип (сердечный). Субъединица представляет собой полипептидную цепь, структура которой кодируется соответствующим геном, что и предопределяет генетическую природу изоферментов. В виду того что полипептиды субъединиц являются продуктами разных генов, они имеют:

· различный аминокислотный состав (первичную структуру);

· неодинаковые физико-химические свойства (электрофоретическую подвижность);

· особенности синтеза в разных тканях.

Ввиду различий в структуре изоферменты различаютсяи и по кинетике (сродству к субстрату), особенностям регуляции активности, а также локализации в клетках эукариот и тканевой специфичности в высших организмах.

В состав тетрамера молекулы ЛГД могут входить разные типы субъединиц в различных соотношениях. При образовании тетрамера возможна следующая комбинация субъединиц:

По этой причине становится понятной причина существования именно пяти изоферментов ЛДГ: ЛДГ 1 имеет минимальную электрофоретическую подвижность, а ЛДГ 5 – максимальную.

Гены изоферментов ЛДГ по-разному экспрессируются в различных тканях: в сердечной мышце синтезируется только субъединица Н-типа. Поэтому здесь образуется только ЛДГ 1 , которая состоит исключительно из этого типа суъединиц. В печени и скелетных мышцах синтезируется только суъединица М-типа. Поэтому здесь образуется и функционирует только изофермент ЛДГ 5 , состоящий исключительно из М-субъединиц. В остальных тканях с разной скоростью экспрессируются гены, кодирующие и Н-, и М-субъединицы. Поэтому в них могут образовываться различные промежуточные формы изоферментов ЛДГ (ЛДГ 2 –ДГ 4).

Ввиду того что субъединицы различаются по аминокислотному составу, они обладают неодинаковой молекулярной массой и электрическим зарядом. Это обусловливает их различные физико-химические свойства.

Помимо различий физико-химических свойств, изоферменты сильно различаются по каталитическим свойствам (по кинетическим параметрам: для них характерна различная величина числа оборотов (V max) и сродства к субстрату (К м), а также по чувствительности к действию различных регуляторов).

Так, у ЛДГ 1 величина К м по отношению к молочной кислоте составляет 0,0044 М , тогда как у ЛДГ 5 – 0,0256 М . Мочевина проявляет свойства ингибитора в отношении ЛДГ 5 , но не оказывает влияния на ЛДГ 1 . При этом в качестве ингибитора ЛДГ 1 выступает пировиноградная кислота, которая не оказывает аналогичного эффекта на ЛДГ 5 .

Таким образом, изоферменты различают по структуре и свойствам, а их существование генетически детерминировано. При этом возникает вопрос о биологической целесообразности изоферментов.

Для того чтобы разобраться в данном вопросе необходимо иметь ввиду, что в различных отделах (компартментах) клетки эукариот, а также в разных тканях многоклеточного организма, существуют различные условия. В них содержится неодинаковая концентрация одних и тех же субстратов и кислорода. Для них характерна различная величина рН и ионный состав. Поэтому в клетках разных тканей, а также в разных компартментах клетки одни и те же химические превращения фактически протекают в неодинаковых условиях. В этой связи существование изоферментов, обладающих различиями в каталитических и регуляторных свойствах, позволяет

1) осуществлять одни и те же химические превращения с одинаковой эффективностью в разных условиях;

2) обеспечивать тонкую регуляцию каталитических превращений в соответствии с особенностями распределения регуляторов в соответствующем компартменте клетки и разных тканях.

Указанное может быть проиллюстрировано особенностями свойств цитоплазматического и митохондриального изоферментов карбамоилфосфатсинтазы. Этот фермент катализирует реакцию синтеза карбамоилфосфата.

Карбамоилфосфат, образующийся в митохондриях, под действием митохондриального изофермента далее вовлекается в процесс образования мочевины, а карбамоилфосфат, образующийся под влиянием цитоплазматического изофермента, затем используется для синтеза пиримидиновых нуклеотидов. Естественно, что эти ферменты, связанные с совершенно различными обменными процессами, разделены пространственно и имеют различные каталитические и регуляторные свойства. Их присутствие в одной клетке позволяет одновременно происходить двум разным процессам, связанным с использованием одного предшественника.

Таким образом, существование изоферментов имеет важное биологическое значение, связанное с возможностью течения одних и тех же ферментативных процессов в разных условиях и по этой причине генетически детерминировано.

Контрольные вопросы

1. В чем заключается сходство и различие между ферментами и небелковыми катализаторами?

2. Перечислите основные классы ферментов и охарактеризуйте их.

3. На чем основана современная международная номенклатура ферментов?

4. Дайте определение понятия энергетический барьер реакции.

5. Какие существуют взгляды на механизм понижения ферментами энергетического барьера реакции?

6. В чем заключается физический смысл константы Михаэлиса и максимальной скорости реакции?

7. В каких единицах измеряется константа Михаэлиса и максимальная скорость реакции?

8. Почему при повышении температуры реакционной смеси до температурного оптимума скорость ферментативной реакции возрастает?

9. Какие виды специфичности ферментов вам известны? С чем связана специфичность ферментов?

10. Почему активность ферментов зависит от рН среды? Активность каких ферментов в большей мере зависит от этого фактора?

11. Какие методы количественного определения ферментов вам известны?

12. В чем измеряется активность ферментов?

13. В чем заключаются принципиальные различия между обратимыми и необратимыми ингибиторами?

14. Что такое конкурентные ингибиторы? Какие конкурентные ингибиторы вам известны?

15. Каков механизм аллостерического ингибирования?

16. В чем заключается биологическая целесообразность существования изоферментов?

17. Какие методы фракционирования изоферментов вам известны?

Глава 6. ВИТАМИНЫ

Витаминами называются органические вещества, которые в малых количествах необходимы для обеспечения нормального обмена веществ и физиологических функций, не синтезируются в организме и являются обязательными компонентами пищи.

Необходимость витаминов для обеспечения жизнедеятельности организма связана с тем, что большинство из них участвует в образовании коферментов. Ввиду того что для обеспечения нормального течения каталитических процессов требуются очень небольшие количества ферментов, которые к тому же не расходуются в процессе химических реакций, витамины тоже необходимы организму в очень небольших количествах.

В настоящее время известно более 20 витаминов. Основными их источниками являются:

· пища животного и растительного происхождения;

· сапрофитная микрофлора толстого кишечника;

· провитамины.

Провитамины представляют собой предшественники витаминов, из которых в организме различными путями происходит образование активных витаминов. К их числу относятся каротин (провитамин А), 7-дегидро-холестерин (провитамин D) и др.

Помимо витаминов, выделяется особая группа витаминоподобных веществ . Эти вещества обладают свойствами витаминов, но синтезируются в организме человека. К ним относятся карнитин, инозитол, липоевая кислота, холин, пангамовая кислота, витамин U и др. Витаминоподобные вещества проявляют свойства витаминов у соответствующих видов организмов.

Наряду с витаминами существует группа веществ – антагонистов, которые обозначаются термином антивитамины . К ним относятся вещества, которые проявляют действие, противоположное действию витаминов.

Антивитамины можно условно подразделить на две группы в зависимости от механизма их антивитаминного эффекта.

1. Ферменты, разрушающие витамины. Примером представителей этой группы могут служить тиаминаза (фермент, катализирующий превращения витамина В 1), аскорбатоксидаза (фермент, катализирующий превращения витамина С) и т.д.

2. Вещества, обладающие сходной с витаминами структурой, за счет чего способные вступать с витаминами в конкурентные отношения за общие участки связывания. В эту группу входят и производные витаминов (окситиамин и др.).

Потребность в витаминах зависит от множества различных причин. К ним относятся пол, возраст, время года, географическая широта обитания, физическое состояние, характер труда, состояние здоровья и др.

В том случае, когда возникает нарушение соответствия между потребностью организма в витамине и уровнем его поступления в организм, наступает состояние витаминного дисбаланса. Проявлением витаминного дисбаланса могут служить:

· гиповитаминозы;

· авитаминозы;

· гипервитаминозы.

Гиповитаминозы представляют собой состояния, при которых уменьшается содержание витамина в организме. Существует две основные группы причин (внешние и внутренние ), которые приводят к их возникновению.

1. К внешним относятся причины, которые приводят к снижению поступления витаминов в организм с пищей (голодание, употребление в пищу продуктов, содержащих малое количество витаминов или подвергнутых неправильной кулинарной обработке).

2. Внутренние причины связаны с увеличением потребности организма в витаминах при определенных состояниях (детский возраст, беременность, тяжелый физический труд, при стрессе и различных внутренних заболеваниях) или с нарушением усвоения витаминов в организме (при различных заболеваниях, связанных с поражением желудочно-кишечного тракта).

Гиповитаминозы имеют довольно широкое распространение. Особенно часто они встречаются в весенний период года.

Авитаминозы представляют собой крайнюю форму гиповитаминозов. Они характеризуются исчезновением из организма отдельных витаминов. Чаще всего причиной авитаминозов служит прекращение поступления витаминов в организм с пищей. В настоящее время это состояние встречается довольно редко. Оно может возникать у тех контингентов людей, которые работают в экстремальных условиях (военные, геологи, моряки и др.).

Гипервитаминозы представляют собой состояния, при которых увеличивается содержание витаминов в организме. Причиной их возникновения чаще всего служит увеличение поступления витаминов с пищей. Наиболее характерно возникновение гипервитаминозов для жирорастворимых витаминов. Оно может возникать при длительном употреблении в пищу продуктов, богатых определенными витаминами, а также от передозировки витаминных препаратов.

Классификация витаминов

В основу современной классификации витаминов положена их раст-воримость. По этому признаку все витамины подразделяются на:

· жирорастворимые – витамины А, D, Е, К, F, Q;

· водорастворимые – витамины группа В (В 1 , В 2 , В 3 , В 5 , В 6 , В 12 , В с), а также РР, С, Н и рутин.

Жирорастворимые витамины

Для этой группы витаминов характерен целый ряд общих свойств:

1. В структуру многих жирорастворимых витаминов входят остатки молекул изопрена. Они соединяются друг с другом в цепи определенной длины, которые во многом и определяют нерастворимость жирорастворимых витаминов в воде и наоборот – хорошую растворимость в органических растворителях:

2. Для обеспечения всасывания жирорастворимых витаминов необходимо наличие достаточного количества желчных кислот в кишечнике, а также достаточное содержание жиров, как их растворителей, в пище.

3. Ввиду того что жирорастворимые витамины нерастворимы в воде, они переносятся в организме кровью с помощью особых белковых переносчиков. Как правило, каждый витамин переносится своим белком-переносчиком.

4. Жирорастворимые витамины способны накапливаться в тканях внутренних органов. В качестве их “депо” наиболее часто выступает ткань печени. Прекращение поступления жирорастворимых витаминов с пищей не сразу приводит к возникновению гиповитаминоза. Это связано с тем, что организм в течение некоторого времени способен обеспечиваться ими из собственных “депо”.

5. Для большинства жирорастворимых витаминов, не характерна коферментная функция.

6. Биологическая роль жирорастворимых витаминов связана с тем, что они обладают способностью регулировать экспрессию генов.

Однако, несмотря на определенные сходства, жирорастворимые витамины обладают существенными особенностями в проявлении своего биологического эффекта.

Витамин А

1. Способность к регуляции делает ферменты важ- ными участниками и своеобразными организаторами клеточных процессов в организме человека. Регуля-ция скорости ферментативных реакций в клетке — основной механизм не только контроля и коорди-нации метаболических путей, но и роста и развития клетки, а также ее ответа на изменение окружающей среды.

2. Существует два основных способа контроля скорости ферментативных реакций:

Контроль количества фермента.

Количество фермента в клетке определяется соот-ношением скоростей его синтеза и распада. Этот спо-соб регуляция скорости ферментативной реакции является более медленным процессом (проявляется спустя несколько часов), чем регуляция активности фермента (практически мгновенный ответ).

Контроль активности фермента.

Активность фермента может регулироваться пу-тем взаимодействия с определенными веществами, изменяющими конформацию активного центра.

3. Ферменты, регулирующие скорость метаболи-ческих путей:

— обычно действуют на ранних стадиях метаболи-ческих путей, в местах ключевых разветвлений ме-таболических путей;

— катализируют в условиях клетки практически необратимые реакции, протекающие наиболее медленно (ключевые).

Пример 1. Регуляция по принципу обратной связи: в многоступенчатых метаболических путях конеч-ный продукт ингибирует регуляторный (ключевой) фермент процесса.

Первый фермент (Ej) последовательного пути превращения вещества А в вещество Z обычно ингибируется конечным продуктом этого метаболи-ческого пути.

Изменение активности ключевого фермента Е 1 происходит в результате изменения конформа-ции после связывания вещества Z в аллостериче ском центре — участке, удаленном от активного центра. Фермент Е 1 аллостерический.

Регуляция по принципу обратной связи проис-ходит относительно быстро, и часто это первый от-вет клетки на изменение условий.

С другой стороны, фермент Е х будет активным при снижении концентрации вещества Z .

4. Основные виды регуляции каталитической ак-тивности ферментов в клетке и структурные изме-нения ферментов в ходе их активации представле-ны в табл. 2.3.

5. Нарушение синтеза фермента может привести к энзимопатиям, при которых недостаток одного фермента в метаболическом пути может вызвать нарушение образования конечного продукта. В си-лу взаимозависимости метаболических путей де-фект одного фермента часто приводит к целому ряду нарушений в обмене веществ:

Существует вероятность, что избыточно накоп-ленный субстрат может перейти на побочный путь метаболизма с образованием необычного и часто токсичного вещества Bj.

6. Отдельные примеры энзимопатий (дисахаридозы, гликогенозы, агликогенозы, фенилпирови-ноградная олигофрения) будут рассмотрены при изучении следующих разделов.

Арендный блок

В клетке постоянно происходит большое количество разнообразных химических реакций, которые формируют метаболические пути - последовательное превращение одних соединений в другие. Чтобы воздействовать на скорость протекания метаболического пути, достаточно регулировать количество или активность ферментов. Обычно в метаболических путях есть ключевые ферменты, благодаря которым происходит регуляция скорости всего пути. Эти ферменты называются регуляторными ферментами; они катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте переключения метаболического пути (точки ветвления).

Регуляция скорости ферментативных реакций осуществляется на 3 независимых уровнях:

1. изменением количества молекул фермента;

2.доступностью молекул субстрата и кофермента;

3.изменением каталитической активности молекулы фермента. Важнейшее значение в изменении скорости метаболических путей играет регуляция каталитической активности одного или нескольких ключевых ферментов данного метаболического пути. Это высокоэффективный и быстрый способ регуляции метаболизма.

Основные способы регуляции активности ферментов:

1. Доступность субстрата или кофермента. Здесь работает закон действия масс – фундаментальный закон химической кинетики: при постоянной температуре скорость химической реакции пропорциональна произведению концентрации реагирующих веществ. Или упрощенно – скорость, с которой вещества реагируют друг с другом, зависит от их концентрации. Таким образом, изменение количества хотя бы одного из субстратов прекращает или начинает реакцию. Например, для цикла трикарбоновых кислот (ЦТК) таким субстратом является оксалоацетат (щавелевоуксусная кислота). Наличие оксалоацетата "подталкивает" реакции цикла, что позволяет вовлекать в окисление молекулы ацетил-SКоА. Именно из-за недостатка оксалоацетата (относительного или абсолютного) развивается кетоацидоз (механизм развития) при голодании и инсулинзависимом сахарном диабете.

2. Компартментализация – это сосредоточение ферментов и их субстратов в одном компартменте (одной органелле) – в эндоплазматическом ретикулуме, митохондриях, лизосомах. Например, ферменты цикла трикарбоновых кислот (ЦТК) и β-окисления жирных кислот расположены в митохондриях, ферменты синтеза белка – в рибосомах.

3. Изменение количества фермента может происходить в результате увеличения или снижения его синтеза. Изменение скорости синтеза фермента обычно зависит от количества определенных гормонов или субстратов реакции, например: -исчезновение пищеварительных ферментов при длительном голодании и их появление в восстановительный период (в результате изменения секреции кишечных гормонов); -при беременности и после родов в молочной железе активно идет синтез фермента лактозосинтазы под воздействием лактотропного гормона;

Гормоны глюкокортикоиды стимулируют синтез ферментов глюконеогенеза, что обеспечивает стабильность концентрации глюкозы в крови и устойчивость ЦНС к стрессу;

4. Ограниченный (частичный) протеолиз проферментов подразумевает, что синтез некоторых ферментов осуществляется в виде более крупного предшественника и при поступлении в нужное место этот фермент активируется через отщепление от него одного или нескольких пептидных фрагментов. Подобный механизм защищает внутриклеточные структуры от повреждений. Примером служит активация протеолитических ферментов желудочно-кишечного тракта (трипсиноген, пепсиноген, прокарбоксипептидазы), факторов свертывания крови, лизосомальных ферментов (катепсины).

5. Аллостерическая регуляция. Аллостерические ферменты построены из двух и более субъединиц: одни субъединицы содержат каталитический центр, другие имеют аллостерический центр и являются регуляторными. Аллостерический центр (allos – чужой) – центр регуляции активности фермента, который пространственно отделен от активного центра и имеется не у всех ферментов. Связывание с аллостерическим центром какой-либо молекулы (называемой активатором или ингибитором, а также эффектором, модулятором, регулятором) вызывает изменение конфигурации белка-фермента и, как следствие, скорости ферментативной реакции. В качестве такого регулятора может выступать продукт данной или одной из последующих реакций, субстрат реакции или иное вещество. Присоединение эффектора к аллостерической (регуляторной) субъединице изменяет конформацию белка и, соответственно, активность каталитической субъединицы. Аллостерические ферменты обычно стоят в начале метаболических путей, и от их активности зависит течение многих последующих реакций. Поэтому они часто называются ключевыми ферментами. В качестве отрицательного регулятора может выступать конечный метаболит биохимического процесса или продукт данной реакции, т.е включается механизм обратной отрицательной связи. Если регуляторами являются начальный метаболит или субстрат реакции, то говорят о прямой регуляции, она может быть как положительной, так и отрицательной. Также регулятором могут быть метаболиты биохимических путей, каким-то образом связанных с данной реакцией. Например, фермент энергетического распада глюкозы, фосфофруктокиназа, регулируется промежуточными и конечными продуктами этого распада. При этом АТФ, лимонная кислота, фруктозо-1,6-дифосфат являются ингибиторами, а фруктозо-6-фосфат и АМФ – активаторами фермента. Аллостерическая регуляция имеет большое значение в следующих ситуациях:

При анаболических процессах. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяют осуществлять регуляцию синтеза этих соединений;

При катаболических процессах. В случае накопления АТФ в клетке происходит ингибирование метаболических путей, обеспечивающих синтез энергии. Субстраты при этом расходуются на реакции запасания резервных питательных веществ;

Для координации анаболических и катаболических путей. АТФ и АДФ - аллостерические эффекторы, действующие как антагонисты;

Для координации параллельно протекающих и взаимосвязанных метаболических путей (например, синтез пуриновых и пиримидиновых нуклеотидов, используемых для синтеза нуклеиновых кислот). Таким образом, конечные продукты одного метаболического пути могут быть аллостерическими эффекторами другого метаболического пути.

6. Белок-белковое взаимодействие обозначает ситуацию, когда в качестве регулятора выступают не метаболиты биохимических процессов, а специфичные белки. В целом ситуация схожа с аллостерическим механизмом: после влияния каких-либо факторов на специфичные белки изменяется активность этих белков, и они, в свою очередь, воздействуют на нужный фермент. К примеру, мембранный фермент аденилатциклаза является чувствительным к воздействию мембранного G-белка, который сам активируется при действии на клетку некоторых гормонов (например, адреналина и глюкагона).

7. Ковалентная (химическая) модификация заключается в обратимом присоединении или отщеплении определенной группы, благодаря чему изменяется активность фермента. Чаще всего такой группой является фосфорная кислота, реже метильные и ацетильные группы. Фосфорилирование фермента происходит по остаткам серина и тирозина. Присоединение фосфорной кислоты к белку осуществляют ферменты протеинкиназы, отщепление – протеинфосфатазы. Ферменты могут быть активны как в фосфорилированном, так и в дефосфорилированном состоянии. Например, ферменты гликогенфосфорилаза и гликогенсинтаза при потребности организма в глюкозе фосфорилируются, при этом фосфорилаза гликогена становится активной и начинает расщепление гликогена, а гликогенсинтаза неактивна. При необходимости синтеза гликогена оба фермента дефосфорилируются, синтаза при этом становится активной, фосфорилаза – неактивной.

Активность ферментов в клетке непостоянна во времени. Ферменты чутко реагируют на ситуацию, в которой оказывается клетка, на факторы, воздействующие на нее как снаружи, так и изнутри. Главная цель такой чувствительности ферментов – отреагировать на изменение окружающей среды, приспособить клетку к новым условиям, дать должный ответ на гормональные и иные стимулы, а в некоторых ситуациях – получить шанс выжить.

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

К данному материалу относятся разделы:

Первичная структура белков. Видовая специфичность белков. Наследственные изменения первичной структуры. Полиморфизм белков. Наследственные протеинопатии: серповидно-клеточная анемия, др примеры.

Конформация белковых молекул (вторичная и третичная структуры). Типы внутримолекулярных связей в белках. Роль пространственной организации пептидной цепи в образовании активных центров. Конформационные изменения при функционировании белков.

Четвертичная структура белков. Кооперативные изменения конформации протомеров. Примеры строения и функционирования олигомерных белков: гемоглобин (в сравнении с миоглобином), аллостерические ферменты.

Понятие о ферментах. Специфичность действия ферментов. Кофакторы ферментов. Зависимость скорости ферментативных реакций от концентрации субстрата, фермента, температуры и рН. Принципы количественного определения ферментов. Единицы активности.

Понятие об активном центре фермента. Механизм действия ферментов. Ингибиторы ферментов: обратимые и необратимые, конкурентные. Применение ингибиторов в качестве лекарств.

Регуляция действия ферментов: аллостерические механизмы, химическая (ковалентная) модификация. Белок-белковые взаимодействия. Примеры метаболических путей, регулируемых этими механизмами. Физиологическое значение регуляции действия ферментов.

Роль ферментов в метаболизме. Многообразие ферментов. Понятие о классификации. Наследственные первичные энзимопатии: фенилкетонурия, алкаптонурия. Другие примеры наследственных энзимопатий. Вторичные энзимопатии. Значение ферментов в медицине.

Понятие о катаболизме и анаболизме и их взаимосвязи. Эндергонические и экзергонические реакции в метаболизме. Способы передачи электронов. Особенности протекания окислительных реакций в организме. Этапы расщепления веществ и освобождения энергии (этапы ка

Оксидоредуктазы. Классификация. Характеристика подклассов. НАД-зависимые дегидрогеназы. Строение окисленной и восстановленной форм. Важнейшие субстраты НАД-зависимых дегидрогеназ. ФАД-зависимые дегидрогеназы: сукцинатдегидрогеназа и ацилКоА-дегидрог

Окислительное декарбоксилирование пирувата и цикл Кребса: последовательность реакций, связь с дыхательной цепью, регуляция, значение.

Дыхательная цепь, компоненты, структурная организация. Электрохимический потенциал, его значение.

Окислительное фосфорилирование АДФ. Механизм. Сопряжение и разобщение окисления и фосфорилирования в дыхательной цепи. Коэффициент Р/0. Регуляция дыхательной цепи.

Субстратное фосфорилирование АДФ. Отличия от окислительного фосфорилирования. Основные пути использования АТФ. Цикл АДФ-АТФ. Понятие о свободном окислении и его значение. Тканевые особенности окислительно-восстановительных процессов.

Функции углеводов. Потребность организма в углеводах. Переваривание углеводов. Нарушения переваривания и всасывания углеводов. Унификация моносахаридов. Роль печени в обмене углеводов.

Биосинтез и мобилизация гликогена: последовательность реакций, физио- логическое значение. Регуляция обмена гликогена. Гликогенозы и агликогенозы.

Анаэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль анаэробного распада глюкозы в мышцах. Дальнейшая судьба молочной кислоты.

Аэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль аэробного распада глюкозы в мышцах при мышечной работе. Роль аэробного распада глюкозы в мозге.

Биосинтез глюкозы (глюконеогенез): возможные предшественники, последовательность реакций. Глюкозо-лактатный цикл (цикл Кори) и глюкозо-аланиновый цикл: физиологическое значение. Значение и регуляция глюко-неогенеза из аминокислот.

Пентозофосфатный путь превращения глюкозы. Окислительный путь образования пентоз. Представление о неокислительном пути образования гексоз. Распространение, роль, регуляция.

Функции липидов. Пищевые жиры; норма суточного потребления, переваривание, всасывание продуктов переваривания. Ресинтез жиров в клетках кишечника. Хиломикроны, строение, значение, метаболизм. Пределы изменения концентрации жиров в крови.

Окисление глицерина и высших жирных к-т. Последовательность реакций. Связь β-окисления с циклом Кребса и дых цепью. Физиологическое значение окисления жирных кислот в зависимости от ритма питания и мышечной активности.

Липолиз и липогенез. Значение. Зависимость липогенеза от ритма питания и состава пищи. Регуляция липолиза и липогенеза. Транспорт и использование жирных кислот, образующихся при мобилизации жира.

Биосинтез жирных кислот: последовательность реакций, физиологическое значение, регуляция.

Пути образования и использования ацетил-КоА. Биосинтез и значение кетоновых тел. Пределы изменений концентрации кетоновых тел в крови в норме, при голодании и сахарном диабете.

Синтез холестерина, регуляция. Биологическое значение холестерина. Атеросклероз. Факторы риска для развития атеросклероза.

Транспортные липопротеиды крови: особенности строения, состава и функций разных липопротеидов. Роль в обмене жиров и холестерина. Пре¬делы изменений концентрации жиров и холестерина в крови. Патология липидного обмена.

Функции пептидов и белков. Суточная потребность в белках. Переваривание белков. Регуляция переваривания белков. Патология переваривания и всасывания белков.

Декарбоксилирование аминокислот. Его сущность. Декарбоксилирование гистидина, серина, цистеина, орнитина, лизина и глутамата. Роль биогенных аминов в регуляции метаболизма и функций.

Трансаминирование аминокислот. Специфичность аминотрансфераз. Значение реакций трансаминирования. Непрямое дезаминирование аминокислот: последовательность реакций, ферменты, биологическое значение.

Образование и пути использования аммиака. Биосинтез мочевины: последовательность реакций, регуляция. Гипераммониемия.

Обмен фенилаланина и тирозина. Наследственные нарушения обмена фенилаланина и тирозина. Значение серина, глицина и метионина.

Синтез креатина: последовательность реакций, значение креатинфосфата. Физиологическая креатинурия. Значение креатинкиназы и креатинина в диагностике.

Нуклеозиды, нуклеотиды и нуклеиновые кислоты, строение, значение. Отличия ДНК и РНК. Нуклеопротеиды. Переваривание нуклеопротеидов.

Катаболизм пуриновых и пиримидиновых оснований. Гиперурикемия. Подагра.

Биосинтез пуриновых и пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Регуляция этих процессов.

Репликация ДНК: механизм и биологическое значение. Повреждение ДНК, репарация повреждений и ошибок репликации ДНК.

Типы РНК: особенности строения, размеры и разнообразие молекул, локализация в клетке, функции. Биосинтез РНК (транскрипция). Строение рибосом и полирибосом. Синтез аминоацил-тРНК. Субстратная специфичность аминоацил-тРНК-синтетаз.

Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция тРНК и роль мРНК в этом процессе.

Регуляция биосинтеза белка. Индукция и репрессия синтеза белка на примере функционирования лактозного оперона кишечной палочки. Ингибиторы матричных биосинтезов: лекарственные препараты, вирусные и бактериальные токсины.

Гемоглобин. Строение. Синтез и распад гемоглобина. Формы билирубина. Пути выведения билирубина и других желчных пигментов. Желтухи.

Белковые фракции плазмы крови. Функции белков плазмы крови. Гипо- и гиперпротеинемия, причины этих состояний. Индивидуальные белки плазмы крови: транспортные белки, белки острой фазы.

Остаточный азот крови. Гиперазотемия, ее причины. Уремия.

Основные биохимические функции и особенности печени.

Взаимосвязь обмена жиров, углеводов и белков.

Биохимия регуляций. Основные принципы и значение. Иерархия регуляторных систем. Классификация межклеточных регуляторов. Центральная регуляция эндокринной системы: роль либеринов, статинов и тропинов.

Понятие о рецепторах. Механизм действия гормонов через внутриклеточные рецепторы и рецепторы плазматических мембран и вторые посредники (общая характеристика).

Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ.

Сахарный диабет. Патогенез. Нарушения обмена веществ при сахарном диабете. Определение толерантности к глюкозе при диагностике сахарного диабета.

Соматотропный гормон, глюкагон и другие пептидные гормоны. Биологическое значение.

Гормоны коры надпочечников. Синтез, метаболизм, регуляция секреции. Глюкокортикостероиды, влияние на обмен веществ. Гипо- и гиперкортицизм

История Казахстана, 6 класс, тесты по экзамену

Ответы по КСЕ

Концепции Современного Естествознания (КСЕ). Естествознание. Система естественных наук. Методы научного познания. Организация материи.Пространство и время. Геология

Науково-дослідницька робота

Організація науково-дослідної роботи у вищому навчальному закладі. Поняття науки та її нормативне регулювання. Методологічні засади наукових досліджень

Финансы. Конспект

Конспект лекций по курсу Финансы - полный. Российская Федерация. Рынок земли. ВВП и ВНП.

Инструменты государственного регулирования экономики

Контрольная работа. по дисциплине «Безопасность жизнедеятельности » на тему: «Ожоги и отморожения: симптомы, классификация и первая помощь»

1. Все химические реакции в клетке протекают при участии ферментов. Поэтому, чтобы воздействовать на скорость протекания метаболического пути (последовательного превращения одних веществ в другие), достаточно регулировать количество молекул фермента или их активность. Обычно в метаболических путях имеются ключевые ферменты, за счет которых происходит регуляция скорости всего пути. Эти ферменты (один или несколько в метаболическом пути) называются регуляторными ферментами. Регуляция скорости ферментативных реакций осуществляется на трех независимых уровнях: изменением количества молекул фермента, доступностью молекул субстрата и кофермента, изменением каталитической активности молекулы фермента (табл. 2.6).

Таблица 2.5. Способы регуляции скорости ферментативных реакций

Способ регуляции Характеристика
Изменение количества молекул фермента Количество молекул фермента в клетке определяется соотношением двух процессов: синтеза и распада. Наиболее изучен механизм регуляции синтеза фермента на уровне транскрипции (синтеза мРНК), который регулируется определенными метаболитами, гормонами и рядом биологически активных молекул
Доступность молекул субстрата и кофермента Важный параметр, контролирующий протекание ферментативной реакции, - наличие субстрата и кофермента. Чем больше концентрация исходного субстрата, тем выше скорость реакции
Изменение каталитической активности молекулы фермента Основными способами регуляции активности ферментов являются: - аллостерическая регуляция; - регуляция с помощью белок-белковых взаимодействий; - регуляция путем фосфорилирования-дефосфорилирова- ния молекулы фермента; - регуляция частичным (ограниченным) протеолизом

Рассмотрим способы регуляции скорости ферментативных реакций за счет изменения каталитической активности молекулы фермента.

2. Аллостерическая регуляция. Аллостерическими ферментами называют ферменты, активность которых может регулироваться с помощью веществэффекторов. Участвующие в аллостерической регуляции эффекторы - это клеточные метаболиты, которые часто являются участниками именно того пути, регуляцию которого они осуществляют.

Эффектор, который вызывает снижение (ингибирование) активности фермента, называется ингибитором. Эффектор, который вызываетповышение (активацию) активности ферментов, называют активатором.

Аллостерические ферменты имеют определенные особенности строения:

Обычно являются олигомерными белками, состоящими из нескольких протомеров;

Имеют аллостерический центр, пространственно удаленный от каталитического активного центра;

Эффекторы присоединяются к ферменту нековалентно в аллостерических (регуляторных) центрах.

Аллостерические центры, так же как и каталитические, могут проявлять различную специфичность по отношению к лигандам: она может быть абсолютной и групповой. Некоторые ферменты имеют несколько аллостерических центров, одни из которых специфичны к активаторам, другие - к ингибиторам.

Протомер, на котором находится аллостерический центр, называется регуляторным протомером в отличие от каталитического протомера, содержащего активный центр, в котором проходит химическая реакция.

Аллостерические ферменты обладают свойством кооперативности: взаимодействие аллостерического эффектора с аллостерическим центром вызывает кооперативное изменение конформации всех субъединиц, приводящее к изменению конформации активного центра и изменению сродства фермента к субстрату, что снижает или повышает каталитическую активность фермента. Если к аллостерическому центру присоединяется ингибитор, то в результате кооперативных конформационных изменений происходит изменение конформации активного центра, что вызывает снижение сродства фермента к субстрату и, соответственно, снижение скорости ферментативной реакции. И наоборот, если к аллостерическому центру присоединяется активатор, то сродство фермента к субстрату увеличивается, что вызывает повышение скорости реакции. Последовательность событий при действии аллостерических эффекторов представлена на рис. 2.26.

Регуляция аллостерических ферментов обратима: отсоединение эффектора от регуляторной субъединицы восстанавливает исходную каталитическую активность фермента.

Аллостерические ферменты катализируют ключевые реакции данного метаболического пути.

Аллостерические ферменты играют важную роль в различных метаболических путях, так как они чрезвычайно быстро реагируют на малейшие изменения внутреннего состава клетки. Скорость метаболических процессов зависит от концентрации веществ, как использующихся, так и образующихся в данной цепи реакций. Исходные вещества могут быть активаторами аллостерических ферментов метаболического пути. В то же время при накапливании конечного продукта какого-либо метаболического пути он может действовать как аллостерический ингибитор фермента. Такой способ регуляции распространен в организме и носит название «отрицательная обратная связь»:

Рис. 2.26. Схема строения и функционирования аллостерического фермента:

А - действие отрицательного эффектора (ингибитора). Ингибитор (I) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения в молекуле фермента, в том числе и в активном центре фермента. Сродство фермента к субстрату снижается, в результате снижается и скорость ферментативной реакции; Б - действие положительного эффектора (активатора). Активатор (А) присоединяется к аллостерическому центру, что вызывает кооперативные конформационные изменения. Сродство фермента к субстрату повышается, и скорость ферментативной реакции увеличивается. Продемонстрировано обратимое действие как ингибитора, так и активатора на активность фермента

Рассмотрим аллостерическую регуляцию процесса катаболизма глюкозы, который заканчивается образованием молекулы АТФ (рис. 2.27). В том случае, если молекулы АТФ в клетке не расходуются, она является ингибитором аллостерических ферментов данного метаболического пути: фосфофруктокиназы и пируваткиназы. В то же время промежуточный метаболит катаболизма глюкозы - фруктозо-1,6-бисфосфат является аллостерическим активатором фермента пируваткиназы. Ингибирование конечным продуктом метаболического пути и активация начальными метаболитами позволяет

Рис. 2.27. Аллостерическая регуляция процесса катаболизма глюкозы.

Молекула АТФ является аллостерическим ингибитором ферментов метаболического пути - фосфофруктокиназы и пируваткиназы. Молекула фруктозо-1,6-бисфосфата является аллостерическим активатором фермента пируваткиназы

осуществлять регуляцию скорости метаболического пути. Аллостерические ферменты катализируют, как правило, начальные реакции метаболического пути, необратимые реакции, скорость-лимитирующие реакции (самые медленные) или реакции в месте разветвления метаболического пути.

3. Регуляция с помощью белок-белковых взаимодействий. Некоторые ферменты изменяют свою активность в результате белок-белковых взаимодействий. Можно выделить по крайней мере два механизма изменения активности фермента таким способом: активация ферментов в результате присоединения белков-активаторов (активация фермента аденилатциклазы с помощью α-субъединицы G-белка, см. модуль 4) и изменение каталитической активности в результате ассоциации и диссоциации протомеров.

В качестве примера регуляции каталитической активности ферментов ассоциацией или диссоциацией протомеров можно рассмотреть регуляцию фермента протеинкиназы А.

Протеинкиназа А (цАМФ-зависимая) состоит из четырех субъединиц двух типов: двух регуляторных (R) и двух каталитических (С). Такой тетрамер не обладает каталитической активностью. Регуляторные субъединицы имеют участки связывания для циклического 3",5"-АМФ (цАМФ) (по два на каждую субъединицу). Присоединение четырех молекул цАМФ к двум регуляторным субъединицам приводит к изменению конформации регуляторных протомеров и к диссоциации тетрамерного комплекса; при этом высвобождаются две активные каталитические субъединицы (рис. 2.28). Активная протеинкиназа А катализирует перенос остатка фосфорной кислоты с АТФ на специфические ОН-группы аминокислотных остатков белков (т.е. вызывает фосфорилирование белков).

Рис. 2.28. Регуляция активности протеинкиназы А (ПКА) с помощью белок-белковых взаимодействий.

Активация ПКА осуществляется с помощью четырех молекул цАМФ, которые присоединяются к двум регуляторным субъединицам, что приводит к изменению конформации регуляторных протомеров и диссоциации тетрамерного комплекса. При этом высвобождаются две активные каталитические субъединицы, способные вызывать фосфорилирование белков

Отщепление молекул цАМФ от регуляторных субъединиц приводит к ассоциации регуляторных и каталитических субъединиц протенкиназы А с образованием неактивного комплекса.

4. Регуляция каталитической активности ферментов путем фосфорилирова- ния-дефосфорилирования. В биологических системах часто встречается механизм регуляции активности ферментов с помощью их ковалентной модификации. Быстрым и широко распространенным способом химической модификации ферментов является их фосфорилирование-дефосфорилирование.

Фосфорилирова-нию подвергаются ОН-группы фермента, которое осуществляется ферментами протеинкиназами (фосфорилирование) ифосфопротеинфосфатазами (дефосфорилирование). Присоединение остатка фосфорной кислоты приводит к изменению конформации активного центра и его каталитической активности. При этом результат может быть двояким: одни ферменты при фосфорилировании активируются, другие, напротив, становятся менее активными (рис. 2.29). Активность протеинкиназ и фосфопротеинфосфатаз регулируется гормонами, что позволяет быстро варьировать активность ключевых ферментов метаболических путей в зависимости от условий внешней среды.

Рис. 2.29. Схема регуляции активности ферментов фосфорилированием-дефосфорилированием.

Фосфорилирование ферментов происходит с помощью фермента протеинкиназы. Донором остатка фосфорной кислоты является молекула АТФ. Фосфорилирование фермента изменяет его конформацию и конформацию активного центра, что изменяет сродство фермента к субстрату. При этом некоторые ферменты при фосфорилировании активируются, другие - ингибируются. Обратный процесс - дефосфорилирование - вызывают ферменты фосфопротеинфосфатазы, отщепляющие остаток фосфорной кислоты от фермента и возвращающие фермент в исходное состояние

5. Регуляция каталитической активности ферментов частичным (ограниченным) протеолизом. Некоторые ферменты, которые функционируют вне клеток (в желудочно-кишечном тракте или плазме крови), синтезируются в виде неактивных предшественников и активируются только в результате гидролиза одной или нескольких определенных пептидных связей, который приводит к отщеплению части молекулы. В оставшейся части белковой молекулы происходит конформационная перестройка и формируется активный центр фермента (рис. 2.30). Частичный протеолиз представляет собой пример регуляции, когда активность фермента изменяется

Рис. 2.30. Активация пепсина с помощью частичного протеолиза.

В результате гидролиза одной или нескольких пептидных связей пепсиногена (неактивной молекулы) отщепляется часть молекулы и формируется активный центр фермента пепсина

необратимо. Такие ферменты функционируют, как правило, в течение короткого времени, определяемого временем жизни белковой молекулы. Частичный протеолиз лежит в основе активации пищеварительных протеолитических ферментов (пепсин, трипсин, химотрипсин, эластаза), пептидных гормонов (инсулин), белков свертывающей системы крови и ряда других белков.

Ферменты являются регулируемыми катализаторами. В качестве регуляторов могут выступать метаболиты, яды. Различают:

- активаторы – вещества, увеличивающие скорость реакции;

- ингибиторы – вещества, уменьшающие скорость реакции.

Активация ферментов . Различные активаторы могут связываться либо с активным центром фермента, либо вне его. К группе активаторов, влияющих на активный центр, относятся: ионы металла, коферменты, сами субстраты.

Активация с помощью металлов протекает по различным механизмам:

Металл входит в состав каталитического участка активного центра;

Металл с субстратом образуют комплекс;

За счет металла образуется мости между субстратом и активным центром фермента.

Субстраты также являются активаторами. При увеличении концентрации субстрата скорость реакции повышается. по достижению концентрации насыщения субстрата эта скорость не изменяется.

Если активатор связывается вне активного центра фермента, то происходит ковалентная модификация фермента :

1) частичный протеолиз (ограниченный протеолиз). Таким образом активируются ферменты пищеварительного канала: пепсин, трипсин, химотрипсин. Трипсин имеет состояние профермента трипсиногена, состоящего из 229 АК остатков. Под действием фермента энтерокиназы и с добавлением воды он превращается в трипсин, при этом отщепляется гексапептид. Изменяется третичная структура белка, формируется активный центр фермента и он переходит в активную форму.

2) фосфорилирование - дефосфорилирование. Пр.: липаза+АТФ= (протеинкиназа) фосфорилированная липаза+АДФ. Это трансферная реакция, использующая фосфат АТФ. При этом осуществляется перенос группы атомов от одной молекулы к другой. Фосфорилированная липаза является активной формой фермента.



Таким же путем происходит активация фосфорилазы: фосфорилаза B+ 4АТФ= фосфорилаза А+ 4АДФ

Также при связывании активатора вне активного центра происходит диссоциация неактивного комплекса «белок-активный фермент». Например, протеинкиназа – фермент, осуществляющий фосфорилирование (цАМФ-зависимое). Протеинкиназа – это белок, имеющий четвертичную структуру и состоящий из 2-х регуляторный и 2-х каталитических субъединиц. R 2 C 2 +2цАМФ=R 2 цАМФ 2 + 2С. Такой тип регуляции называется аллостерической регуляцией (активацией).

Ингибирование ферментов . Ингибитор – это вещество, вызывающее специфическое снижение активности фермента. Следует различать ингибирование и инактивацию. Инактивация – это, например, денатурация белка в результате действия денатурирующих агентов.

По прочности связывания ингибитора с ферментом ингибиторы делят на обратимые и необратимые.

Необратимые ингибиторы прочно связаны и разрушают функциональные группы молекулы фермента, которые необходимы для проявления его каталитической активности. Все процедуры по очистке белка не влияют на связь ингибитора и фермента. Пр.: действие фосфорорганических соединений на фермент – холинэстеразу. Хлорофос, зарин, зоман и др. фосфорорганические соединения связываются с активным центром холинэстеразы. В результате происходит фосфорилирование каталитических групп активного центра фермента. В следствии молекулы фермента, связанные с ингибитором, не могут связываться с субстратом и наступает тяжелое отравление.

Также выделяют обратимые игнибиторы , например прозерин для холинэстеразы. Обратимое ингибирование зависит от концентрации субстрата и ингибитора и снимается избытком субстрата.

По механизму действия выделяют:

Конкурентное ингибирование;

Неконкурентное ингибирование;

Субстратное ингибирование;

Аллостерическое.

1) Конкурентное (изостерическое) ингибирование – это торможение ферментативной реакции, вызванное связыванием ингибитора с активным центром фермента. При этом ингибитор имеет сходство с субстратом. В процессе происходит конкуренция за активный центр: образуются фермент-субстратные и ингибитор-ферментные комплексы. E+S®ES® EP® E+P; E+I® E. Пр.: сукцинатдегидрогеназная реакция [рис. COOH-CH 2 -CH 2 -COOH®(над стрелкой СДГ, под ФАД®ФАДН 2) COOH-CH=CH-COOH]. Истинным субстратом этой реакции является сукцинат (янтарная к-та). Ингибиторы: малоновая к-та (COOH-CH 2 -COOH) и оксалоацетат (COOH-CO-CH 2 -COOH). [рис. фермента с 3 дырками+ субстрат+ ингибитор= комплекс ингибитора с ферментом]

Пр.: фермент холинэстераза катализирует превращение ацетилхолина в холин: (CH 3) 3 -N-CH 2 -CH 2 -O-CO-CH 3 ® (над стрелкой ХЭ, под – вода) CH 3 СOOH+(CH 3) 3 -N-CH 2 -CH 2 -OH. Конкурентными ингибиторами являются прозерин, севин.

2) Неконкурентное ингибирование – торможение, связанное с влиянием ингибитора на каталитическое превращение, но не на связывание фермента с субстратом. В этом случае ингибитор может связываться и с активным центром (каталитический участок) и вне его.

Присоединение ингибитора вне активного центра приводит к изменению конформации (третичной структуры) белка, вследствие чего изменяется конформация активного центра. Это затрагивает каталитический участок и мешает взаимодействию субстрата с активным центром. При этом ингибитор не имеет сходства с субстратом и это ингибирование нельзя снять избытком субстрата. Возможно образование тройных комплексов фермент-ингибитор-субстрат. Скорость такой реакции не будет максимальной.

К неконкурентным ингибиторам относят:

Цианиды. Они связываются с атомом железа в цитохромоксидазе и в результате этого фермент теряет свою активность, а т.к. это фермент дыхательной цепи, то нарушается дыхание клеток и они гибнут.

Ионы тяжёлых металлов и их органические соединения (Hg, Pb и др.). Механизм их действия связан с соединением их с различными SH-группами. [рис. фермента с SH-группами, иона ртути, субстрата. Все это соединяется в тройной комплекс]

Ряд фармакологических средств, которые должны поражать ферменты злокачественных клеток. Сюда же относятся ингибиторы, использующиеся в сельском хозяйстве, бытовые отравляющие вещества.

3) Субстратное ингибирование – торможение ферментативной реакции, вызванное избытком субстрата. Происходит в результате образования фермент-субстратного комплекса, неспособного подвергаться каталитическому превращению. Его можно снять и уменьшить концентрацию субстрата. [рис. связывания фермента сразу с 2 субстратами]

4) Аллостерическое ингибирование – торможение ферментативной реакции, вызванное присоединением аллостерического ингибитора в аллостерическом центре аллостерического фермента. Такой тип ингибирования характерен для аллостерических ферментов, имеющих четвертичную структуру. В качестве ингибиторов могут выступать метаболиты, гормоны, ионы металлов, коферменты.

Механизм действия:

а) присоединение ингибитора к аллостерическому центру;

б) изменяется конформация фермента;

в) изменяется конформация активного центра;

г) нарушается комплиментарность активного центра фермента к субстрату;

д) уменьшается число молекул ES;

е) уменьшается скорость ферментативной реакции.

[рис. фермент с 2 дырками, к одной аллостерический ингибитор и вторая меняет форму]

К особенностям аллостерических ферментов относят ингибирование по отрицателтной обратной связи. A®(E 1)B®(E 2) C®(E 3) D (от D стрелочка к стрелке между А и В). D – метаболит, действующий как аллостерический ингибитор на фермент Е 1 .

Обмен веществ

Обмен веществ (метаболизм) – это совокупность физиологических и биохимических процессов, обеспечивающих жизнедеятельность организма во взаимосвязях с внешней средой, направленных на самовоспроизведение и самосохранение.

К физиологическим процессам относятся пищеварение, всасывание, внешнее дыхание, выделение и др.; к биохимическим – химические превращения белков, жиров, углеводов, поступающих в организм в виде пищевых веществ. Особенностью биохимических процессов является то, что они осуществляются в ходе ряда ферментативных реакций. Именно ферменты обеспечивают определенную последовательность, места и скорость реакций.

По направленности все химические превращения делят на:

а) диссимиляция (катаболизм) – распад веществ до более простых с переходом энергии связей вещества в энергию макроэргических связей (АТФ, НАД·Н, др.);

б) ассимиляция (анаболизм) – синтез более сложных веществ из более простых с затратой энергии.

Биологическое значение этих двух процессов состоит в том, что при расщеплении веществ освобождается заключенная в них энергия, которая обеспечивает все функциональные возможности организма. В то же время, при распаде веществ образуются "строительные материалы" (моносахариды, АК, глицерин и др.), которые затем используются в синтезе специфических организму веществ (белков, жиров, углеводов и др.).

[СХЕМА] Над горизонтальной линией (во внешней среде) – "белки, жиры, углеводы", от них стрелка вниз под линию (внутри организма) к надписи "диссимиляция", от последней четыре стрелки: две вверх к надписям над линией "теплота" и "конечные продукты"; одна стрелка вправо к надписи "промежуточные вещества (метаболиты)", от них к "ассимиляция", затем к "собственные белки, жиры, углеводы"; одна стрелка вниз к надписи "энергия АТФ", от нее – к "мышечное сокращение, проведение нервного импульса, секреция и др." а также наверх к "теплота" и "ассимиляция".

Диссимиляция белков, жиров и углеводов протекает по-разному, но в разрушении этих веществ есть ряд общих этапов:

1) Этап переваривания . В ЖКТ белки распадаются до АК, жиры – до глицерина и ВЖК, углеводы – до моносахаридов. Нарабатывается большое количество неспецифических веществ из специфических, поступающих извне. За счет переваривания в ЖКТ выделяется около 1% химической энергии веществ. Этот этап необходим для того, чтобы вещества, поступившие с пищей, смогли всосаться.

2) Этап межуточного обмена (тканевой обмен веществ, метаболизм ). На клеточном уровне он распределяется на анаболизм и катаболизм. Образуются и превращаются промежуточные вещества обмена веществ – метаболиты . При этом мономеры, образовавшиеся на этапе переваривания, распадаются с образованием небольшого (до пяти) ключевых промежуточных продуктов: ЩУК, альфа-КГ, ацетил-КоА, ПВК, альфа-глицерофосфат. Выделяется до 20% энергии веществ. Как правило, межуточный обмен происходит в цитоплазме клеток.

3) Окончательный распад веществ с участием кислорода до конечных продуктов (СО 2 , Н 2 О, азотсодержащие вещества). Выделяется около 80% энергии веществ.

Все рассмотренные этапы отражают лишь главные формы обменных процессов. Как на втором, так и на третьем этапах выделяющаяся энергия накапливается в виде энергии химических связей макроэргических соединений (это вещества, имеющие хотя бы одну макроэргическую связь, напр., АТФ, ЦТФ, ТТФ, ГТФ, УТФ, АДФ, ЦДФ, …, креатинфосфат, 1,3-дифосфоглицериновая кислота). Так, энергия связи последнего фосфата в молекуле АТФ составляет около 10-12 ккал/моль.

Биологическая роль обмена веществ:

1. аккумуляция энергии при распаде химических соединений;

2. использование энергии для синтеза собственных веществ организма;

3. распад обновляемых структурных компонентов клетки;

4. происходит синтез и распад биомолекул специального назначения.

Обмен белков