Тетраэдр история. Объем тетраэдра. I. Подготовительный этап

Примечание . Это часть урока с задачами по геометрии (раздел стереометрия, задачи о пирамиде). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение . Для простых подкоренных выражений может использоваться знак "√" . Правильный тетраэдр - это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны

У тетраэдра 4 грани, 4 вершины и 6 ребер.

Основные формулы для правильного тетраэдра приведены в таблице.

Где:
S - Площадь поверхности правильного тетраэдра
V - объем
h - высота, опущенная на основание
r - радиус вписанной в тетраэдр окружности
R - радиус описанной окружности
a - длина ребра

Практические примеры

Задача .
Найдите площадь поверхности треугольной пирамиды, у которой каждое ребро равно √3

Решение .
Поскольку все ребра треугольной пирамиды равны - она является правильной. Площадь поверхности правильной треугольной пирамиды равна S = a 2 √3 .
Тогда
S = 3√3

Ответ : 3√3

Задача .
Все ребра правильной треугольной пирамиды равны 4 см. Найдите объем пирамиды

Решение .
Поскольку в правильной треугольной пирамиде высота пирамиды проецируется в центр основания, который одновременно является центром описанной окружности, то

AO = R = √3 / 3 a
AO = 4√3 / 3

Таким образом, высота пирамиды OM может быть найдена из прямоугольного треугольника AOM

AO 2 + OM 2 = AM 2
OM 2 = AM 2 - AO 2
OM 2 = 4 2 - (4√3 / 3) 2
OM 2 = 16 - 16/3
OM = √(32/3)
OM = 4√2 / √3

Объем пирамиды найдем по формуле V = 1/3 Sh
При этом площадь основания найдем по формуле S = √3/4 a 2

V = 1/3 (√3 / 4 * 16) (4√2 / √3)
V = 16√2 / 3

Ответ : 16√2 / 3 см

Тетраэдр в переводе с греческого означает "четырехгранник". Эта геометрическая фигура обладает четырьмя гранями, четырьмя вершинами и шестью ребрами. Грани представляют собой треугольники. По сути, тетраэдр - это Первые упоминания о многогранниках появились еще задолго до существования Платона.

Сегодня поговорим об элементах и свойствах тетраэдра, а также узнаем формулы нахождения у этих элементов площади, объема и других параметров.

Элементы четырехгранника

Отрезок, выпущенный из любой вершины тетраэдра и опущенный на точку пересечения медиан грани, являющейся противоположной, называется медианой.

Высота многоугольника представляет собой нормальный отрезок, опущенный из вершины напротив.

Бимедианой называется отрезок, соединяющий центры скрещивающихся ребер.

Свойства тетраэдра

1) Параллельные плоскости, которые проходят через два скрещивающихся ребра, образуют описанный параллелепипед.

2) Отличительным свойством тетраэдра является то, что медианы и бимедианы фигуры встречаются в одной точке. Важно, что последняя делит медианы в отношении 3:1, а бимедианы - пополам.

3) Плоскость разделяет тетраэдр на две равные по объему части, если проходит через середину двух скрещивающихся ребер.

Виды тетраэдра

Видовое разнообразие фигуры достаточно широко. Тетраэдр может быть:

  • правильным, то есть в основании равносторонний треугольник;
  • равногранным, у которого все грани одинаковы по длине;
  • ортоцентрическим, когда высоты имеют общую точку пересечения;
  • прямоугольным, если плоские углы при вершине нормальные;
  • соразмерным, все би высоты равны;
  • каркасным, если присутствует сфера, которая касается ребер;
  • инцентрическим, то есть отрезки, опущенные из вершины в центр вписанной окружности противоположной грани, имеют общую точку пересечения; эту точку именуют центром тяжести тетраэдра.

Остановимся подробно на правильном тетраэдре, свойства которого практически не отличаются.

Исходя из названия, можно понять, что так он называется потому, что грани являют собой правильные треугольники. Все ребра этой фигуры конгруэнтны по длине, а грани - по площади. Правильный тетраэдр - это один из пяти аналогичных многогранников.

Формулы четырехгранника

Высота тетраэдра равна произведению корня из 2/3 и длины ребра.

Объем тетраэдра находится так же, как объем пирамиды: корень квадратный из 2 разделить на 12 и умножить на длину ребра в кубе.

Остальные формулы для расчета площади и радиусов окружностей представлены выше.

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани , 6 ребер и 4 вершины .
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием , а оставшиеся три грани боковыми гранями.

Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.

Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим


Вынесем 1/2a. Получим



Применим формулу разность квадратов

После небольших преобразований получим


Объем любого тетраэдра можно рассчитать по формуле
,
где ,

Подставив эти значения, получим

Таким образом формула объема для правильного тетраэдра

где a –ребро тетраэдра

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра

Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим


Правильный тетраэдр. Составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180?. Рис. 1.

Картинка 4 из презентации «Многогранник 2» к урокам геометрии на тему «Правильный многогранник»

Размеры: 445 х 487 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока геометрии, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Многогранник 2.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 197 КБ.

Скачать презентацию

Правильный многогранник

«Доказательство теоремы Пифагора» - Доказательство Евклида. Доказательства теоремы. Алгебраическое доказательство. Геометрическое доказательство. Значение теоремы Пифагора. Рассмотрим квадрат, показанный на рисунке. И ныне теорема Пифагора Верна, как и в его далёкий век. Формулировка теоремы. Теорема Пифагора - это одна из самых важных теорем геометрии.

«Правильные многогранники» - Правильный октаэдр. Правильный додекаэдр. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Названия многогранников. Кристаллы поваренной соли (NaCl) имеют форму куба. Правильный икосаэдр составлен из двадцати равносторонних треугольников. Правильный тетраэдр составлен из четырёх равносторонних треугольников.

«История геометрии» - VI век до нашей эры. В геометрии много формул, фигур, теорем, задач, аксиом. Средние века. Фалес предложил способ определения расстояния до корабля на море. Древний Египет. В целом творение Евклида величественно. Фалес вычислил высоту египетской пирамиды Хеопса по длине отбрасываемой тени. В геометрии Любачевского сумма углов треугольника меньше 180°, в ней нет подобных фигур.

«Угол между векторами» - Рассмотрим направляющие прямых D1B и CB1. Найти угол между прямыми ВD и CD1. Косинус угла между векторами. Найдем координаты векторов DD1 и MN. Скалярное произведение векторов. Как находят расстояние между точками? Угол между векторами. Вычисление углов между прямыми и плоскостями. Направляющий вектор прямой.

«Геометрия Лобачевского» - На рисунке буквы расположены параллельно (стоят прямо) или нет? Неевклидова геометрия единственно правильная? Риманова геометрия получила своё название по имени Б.Римана, который заложил её основы в 1854. Наука никогда не будет стоять на месте. На рисунке изображена спираль или несколько окружностей?

«Равнобедренный треугольник» - Боковая сторона. BD - медиана. Высота. Основание. Равнобедренный треугольник. Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой. АВ и ВС – боковые стороны. В равнобедренном треугольнике углы при основании равны. BD - высота. ВD - биссектриса. Треугольник, все стороны которого равны, называется равносторонним.

Всего в теме 15 презентаций

Разделы: Математика

План подготовки и проведения занятия:

I. Подготовительный этап:

  1. Повторение известных свойств треугольной пирамиды.
  2. Выдвижение гипотез о возможных, не рассмотренных ранее, особенностях тетраэдра.
  3. Формирование групп для проведения исследований по данным гипотезам.
  4. Распределение заданий для каждой группы (с учётом желания).
  5. Распределение обязанностей по выполнению задания.

II. Основной этап:

  1. Решение гипотезы.
  2. Консультации с учителем.
  3. Оформление работы.

III. Заключительный этап:

  1. Представление и защита гипотезы.

Цели занятия:

  • обобщить и систематизировать знания и умения учащихся; изучить дополнительный теоретический материал по указанной теме; научить применять знания при решении нестандартных задач, видеть в них простые составляющие;
  • формировать навык работы учащихся с дополнительной литературой, совершенствовать умение анализировать, обобщать, находить главное в прочитанном, доказывать новое; развивать коммуникативные навыки учащихся;
  • воспитывать графическую культуру.

Подготовительный этап (1урок):

  1. Сообщение учащегося “Тайны великих пирамид”.
  2. Вступительное слово учителя о разнообразии видов пирамид.
  3. Обсуждение вопросов:
  • По каким признакам можно объединять неправильные треугольные пирамиды
  • Что мы понимаем под ортоцентром треугольника, и что можно называть ортоцентром тетраэдра
  • Существует ли ортоцентр у прямоугольного тетраэдра
  • Какой тетраэдр называют равногранным Какими свойствами он может обладать
  1. В результате рассмотрения разнообразных тетраэдров, обсуждения их свойств уточняются понятия и появляется некоторая структура:

  1. Рассмотрим свойства правильного тетраэдра.(Приложение)

Свойства 1-4 доказываются устно с использованием Слайда1.

Свойство 1: Все ребра равны.

Свойство 2: Все плоские углы равны 60°.

Свойство 3: Суммы плоских углов при любых трех вершинах тетраэдра равны 180°.

Свойство 4: Если тетраэдр правильный, то любая его вершина проектируется в ортоцентр противоположной грани.

Дано:

ABCD – правильный тетраэдр

AH – высота

Доказать:

H –ортоцентр

Доказательство:

1) точка H может совпадать с какой-либо из точек A, B, C. Пусть H ?B, H ?C

2) AH + (ABC) => AH + BH, AH + CH, AH + DH,

3) Рассмотрим ABH, BCH, ADH

AD – общая => ABH, BCH, ADH => BH =CH = DH

AB = AC = AD т. H – является ортоцентром ABC

Что и требовалось доказать.

  1. На первом уроке Свойства 5-9 формулируются как гипотезы, которые требуют доказательства.

Каждая группа получает своё домашнее задание:

Доказать одно из свойств.

Подготовить обоснование с презентацией.

II. Основной этап (в течение недели):

  1. Решение гипотезы.
  2. Консультации с учителем.
  3. Оформление работы.

III. Заключительный этап (1-2 урока):

Представление и защита гипотезы с использование презентаций.

При подготовке материала к заключительному уроку учащиеся приходят к выводу об особенности точки пересечения высот, мы договариваемся называть её “удивительной” точкой.

Свойство 5: Центры описанной и вписанной сфер совпадают.

Дано:

DABC –правильный тетраэдр

О 1 - центр описанной сферы

О - центр вписанной сферы

N – точка касания вписанной сферы с гранью АВС

Доказать: О 1 = О

Доказательство:

Пусть OA = OB =OD = OC – радиусы описанной окружности

Опустим ОN + (ABC)

AON = CON – прямоугольные, по катету и гипотенузе => AN = CN

Опустим OM + (BCD)

COM DOM - прямоугольные, по катету и гипотенузе => CM = DM

Из п. 1 CON COM => ON =OM

ОN + (ABC) => ON,OM – радиусы вписанной окружности.

Теорема доказана.

Для правильного тетраэдра существует возможность его взаимного расположения со сферой – касание с некоторой сферой всеми своими ребрами. Такую сферу иногда называют “полувписанной”.

Свойство 6: Отрезки, соединяющие середины противоположных ребер и перпендикулярные этим ребрам являются радиусами полувписанной сферы.

Дано:

ABCD – правильный тетраэдр;

AL =BL, AK=CK, AS=DS,

BP=CP, BM = DM, CN = DN.

Доказать:

LO = OK = OS = OM = ON =OP

Доказательство.

Тетраэдр ABCD – правильный => AO= BO = CO =DO

Рассмотрим треугольники AOB, AOC, COD, BOD,BOC, AOD.

AO=BO=>?AOB – равнобедренный =>
OL – медиана, высота, биссектриса
AO=CO=>?AOC– равнобедренный =>
ОK– медиана, высота, биссектриса
CO=DO=>?COD– равнобедренный =>
ON– медиана, высота, биссектриса AOB=> AOC= COD=
BO=DO=>?BOD– равнобедренный => BOD= BOC= AOD
OM– медиана, высота, биссектриса
AO=DO=>?AOD– равнобедренный =>
OS– медиана, высота, биссектриса
BO=CO=>?BOC– равнобедренный =>
OP– медиана, высота, биссектриса
AO=BO=CO=DO
AB=AC=AD=BC=BD=CD

3) OL, OK, ON, OM, OS, OP - высоты в равных OL,OK,ON,OM,OS, OP радиусы

равнобедренных треугольниках сферы

Следствие:

В правильном тетраэдре можно провести полувписанную сферу.

Свойство 7: если тетраэдр правильный, то каждые два противоположных ребра тетраэдра взаимно перпендикулярны.

Дано:

DABC – правильный тетраэдр;

H – ортоцентр

Доказать:

Доказательство:

DABC – правильный тетраэдр =>?ADB – равносторонний

(ADB) (EDC) = ED

ED – высота ADB => ED +AB,

AB + CE ,=> AB+ (EDC) => AB + CD.

Аналогично доказывается перпендикулярность других ребер.

Свойство 8: Шесть плоскостей симметрии пересекаются в одной точке. В точке О пересекаются четыре прямые, проведенные через центры описанных около граней окружностей перпендикулярно к плоскостям граней, и точка О является центром описанной сферы.

Дано:

ABCD – правильный тетраэдр

Доказать:

О – центр описанной сферы;

6 плоскостей симметрии пересекаются в точке О;

Доказательство.

CG + BD , т.к. BCD - равносторонний => GO + BD (по теореме о трех GO + BD перпендикулярах)

BG = GD, т.к. AG – медиана ABD

ABD (ABD)=> ? BOD - равнобедренный => BO=DO

ED + AB , т.к. ABD –равносторонний => OE + AD(по теореме о трёх перпендикулярах)

BE = AE, т.к. DE – медиана?ABD

ABD (ABD) =>?AOB – равнобедренный =>BO=AO

(AOB) (ABD) = AB

ON + (ABC) OF + AC (по теореме о трёх

BF + AC, т.к. ABC - равносторонний перпендикулярах)

AF = FC, т.к. BF – медиана?ABC

ABC (ABC) => AOC - равнобедренный => AO = CO

(AOC) ?(ABC) = AC

BO = AO =>AO = BO = CO = DO – радиусы сферы,

AO = CO описанной около тетраэдра ABCD

(ABR) (ACG) = AO

(BCT) (ABR) = BO

(ACG) (BCT) = CO

(ADH) (CED) = DO

AB + (ABR)(ABR)(BCT)(ACG)(ADH)(CED) (BDF)

Следовательно:

Точка О является центром описанной сферы,

6 плоскостей симметрии пересекаются в точке О.

Свойство 9 : Тупой угол между перпендикулярами, проходящими через вершины тетраэдра к ортоцентрам, равен 109°28"

Дано:

ABCD – правильный тетраэдр;

O – центр описанной сферы;

Доказать:

Доказательство:

1)AS – высота

ASB = 90 o OSB прямоугольный

2)(по свойству правильного тетраэдра)

3)AO=BO – радиусы описанной сферы

4) 70°32"

6) AO=BO=CO=DO =>?AOD=?AOC=?AOD=?COD=?BOD=?BOC

  • является точкой пересечения высот правильного тетраэдра
  • является центром вписанной сферы
  • является центром полувписанной сферы
  • является центром описанной сферы
  • является центром тяжести тетраэдра
  • является вершиной четырех равных правильных треугольных пирамид с основаниями – гранями тетраэдра.
  • Заключение.

    (Учитель и учащиеся подводят итоги занятия. С кратким сообщением о тетраэдрах, как структурной единице химических элементов, выступает один из учащихся.)

    Изучены свойства правильного тетраэдра и его “удивительная” точка.

    Выяснено, что форму только такого тетраэдра, имеющего все выше перечисленные свойства, а также “идеальную” точку, могут иметь молекулы силикатов и углеводородов. Или же молекулы могут состоять из нескольких правильных тетраэдров. В настоящее время тетраэдр известен не только как представитель древних цивилизации, математики, но и как основа строения веществ.

    Силикаты – солеобразные вещества, содержащие соединения кремния с кислородом. Их название происходит от латинского слова “силекс” – “кремень”. Основу молекул силикатов составляет атомные радикалы , имеющие форму тетраэдров.

    Силикаты – это и песок, и глина, и кирпич, и стекло, и цемент, и эмаль, и тальк, и асбест, и изумруд, и топаз.

    Силикаты слагают более 75 % земной коры (а вместе с кварцем около 87%) и более 95% изверженных горных пород.

    Важной особенностью силикатов является способность к взаимному сочетанию (полимеризации) двух или нескольких кремнекислородных тетраэдров через общий атом кислорода.

    Такую же форму молекул имеют предельные углеводороды, но состоят они, в отличии от силикатов, из углерода и водорода. Общая формула молекул

    К углеводородам можно отнести природный газ.

    Предстоит рассмотреть свойства прямоугольного и равногранного тетраэдров.

    Литература.

    • Потапов В.М., Татаринчик С.Н. “Органическая химия”, Москва 1976г.
    • Бабарин В.П. “Тайны великих пирамид”, Санкт-Петербург, 2000г.
    • Шарыгин И. Ф. “Задачи по геометрии”, Москва, 1984г.
    • Большой энциклопедический словарь.
    • “Школьный справочник”, Москва, 2001г.