Объяснение темы модуль действительного числа. Модуль числа. Ненаучное объяснение того, зачем он нужен. Для любых двух точек и координатной прямой расстояние

В школе на уроке математики каждый год ученики разбирают новые темы. 6 класс обычно изучает модуль числа – это важное понятие в математике, работа с которым встречается далее в алгебре и высшей математики. Очень важно изначально правильно понять объяснение термина и разобраться в этой теме, чтобы успешно проходить прочие темы.

Для начала следует понимать, что абсолютная величина – это параметр в статистике (измеряется количественно), который характеризует изучаемое явление по его объему. При этом явление должно осуществляться в определенных временных рамках и с определенным месторасположением. Различают значения:

  • суммарные – подходят для группы единиц или полностью всей совокупности;
  • индивидуальные – подходят только для работы с единицей некой совокупности.

Понятия широко используются в статистических измерениях, результатом которых являются показатели, характеризующие абсолютные размеры у каждой единицы некоего явления. Измеряются они в двух показателях: натуральном, т.е. физические единицы (шт., люди) и условно-натуральном. Модуль в математике является отображением данных показателей.

Что такое модуль числа?

Важно! Данное определение «module» с латыни переводиться как «мера» и означает абсолютную величину любого натурального числа.

Но у данного понятия есть и геометрическое объяснение, поскольку модулю в геометрии равняется расстояние от начала системы координат до точки X, которое измеряется в привычных единицах измерения.

Для того, чтобы определить данный показатель у числа, следует не учитывать его знак (минус, плюс), но при этом следует помнить то, что он никогда не может быть отрицательным. Данное значение на бумаге выделяется графически в виде квадратных скобок — |a|. При этом, математическое определение такое:

|х| = х, если х больше или равен нулю и -х, если меньше нуля.

Английский ученый Р. Котес был тем человеком, кто впервые применил данное понятие в математических расчетах. А вот К. Вейерштрасс, математик из Германии, придумал и ввел в использование графический символ.

В геометрии module можно рассмотреть на примере координатной прямой, на которое нанесены 2 произвольные точки. Предположим, одна — А имеет значение 5, а вторая В - 6. При подробном изучении чертежа станет ясно, что расстояние от А до В – 5 единиц от нуля, т.е. начала координат, а точка В размещена от начала координат на 6 единиц. Можно сделать вывод, что module точки, А = 5, а точки В = 6. Графически это можно обозначить так: | 5 | = 5. Т. е. расстояние от точки до начала координат является модулем данной точки.

Полезное видео: что такое модуль действительного числа?

Свойства

Как у любого математического понятия, у module есть свои математические свойства:

  1. Он всегда положительный, поэтому модулем положительного значения будет оно само, например, модуль числа 6 и -6 равен 6. Математически это свойство можно записать как |a| = a, при a> 0;
  2. Показатели противоположных чисел равны между собой. Это свойство понятнее в геометрическом изложении, поскольку на прямой данные числа располагаются в разных местах, но при этом от начала отсчета их отделяет равное количество единиц. Математически это записывается так: |а| = |-а|;
  3. Модуль нуля равен нулю, при условии, что действительное число – это ноль. Это свойство подтверждается тем фактом, что ноль является началом координат. Графически это записывают так: |0| = 0;
  4. Если требуется найти модуль двух умножающихся цифр, стоит понимать, что он будет равен полученному произведению. Другими словами, произведение величин А и В = АВ, при условии, что они положительные или же отрицательные, и тогда произведение равняется -АВ. Графически это можно записать как |А*В| = |А| * |В|.

Успешное решение уравнений с модулем зависит от знания данных свойств, которое поможет любому правильно вычислять и работать с данным показателем.

Свойства модуля

Важно ! Показатель не может быть отрицательным, поскольку он определяет расстояние, которое всегда положительное.

В уравнениях

В случае работы и решения математических неравенств, в которых присутствует module, всегда необходимо помнить, что для получения итогового правильного результата следует раскрыть скобки, т.е. открыть знак module . Зачастую, в этом и есть смысл уравнения.

При этом стоит помнить, что:

  • если в квадратных скобках записано выражение, его необходимо решить: |А + 5| = А + 5, при А больше или равным нулю и 5-А, в случае А меньше нуля;
  • квадратные скобки чаще всего должны раскрываться независимо от значений переменной, например, если в скобках заключено выражение в квадрате, поскольку при раскрытии в любом случае будет положительное число.

Очень легко решаются уравнения с module путем занесения значений в систему координат, поскольку тогда легко увидеть визуально значения и их показатели.

Полезное видео: модуль действительного числа и его свойства

Вывод

Принцип понимания такого математического понятия, как module, крайне важен, поскольку оно используется в высшей математике и прочих науках, поэтому необходимо уметь работать с ним.


3 ЧИСЛА положительные неположительные отрицательные неотрицательные Модуль действительного числа


4 Х, если Х 0, -Х, если Х


5 1) |а|=5 а = 5 или а = - 5 2) |х - 2|=5 х – 2 = 5 или х – 2 = - 5 х=7 3) |2 х+3|=4 2 х+3= или 2 х+3= 2 х= х= 4) |х - 4|= - 2 х= ,5- 3,5 Модуль действительного числа


6 Х, если Х 0, -Х, если Х


7 Работа с учебником по стр Сформулировать свойства модуля 2. В чем состоит геометрический смысл модуля? 3. Описать свойства функции y = |x| по плану 1) D (y) 2) Нули функции 3) Ограниченность 4) y н/б, y н/м 5) Монотонность 6) E (y) 4. Как получить из графика функции y = |x| график функции y = |x+2| y = |x-3| ?


8 Х, если Х 0, -Х, если Х










13 Самостоятельная работа «2 - 3» 1. Построить график функции y = |x+1| 2. Решить уравнение: а) |x|=2 б) |x|=0 «3 - 4» 1. Построить график функции: 2. Решить уравнение: 1 вариант 2 вариант y = |x-2| |x-2|=3 y = |x+3| |x+3|=2 «4 - 5» 1. Построить график функции: 2. Решить уравнение: y = |2x+1| |2x+1|=5 y = |4x+1| |4x+1|=3
15 Советы великих 1) |-3| 2)Число, противоположное числу (-6) 3) Выражение, противоположное выражению) |- 4: 2| 5) Выражение, противоположное выражению) |3 - 2| 7) |- 3 2| 8) | 7 - 5| Варианты ответов: __ _ АЕГЖИКНТШЭЯ



Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим:

(Забыл, Повтори.)

Если, то какой знак имеет? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Ответы:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел!!!

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что, а значит.

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему . И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения, если.

2. У каких чисел модуль равен?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1 :

Итак, подставим значения и в выражение

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и.

Решение 3:

а)
б)
в)
г)

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное , то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число , то значение модуля равно противоположному числу (то есть числу, взятому со знаком «-»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем.

Следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго - положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «-». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Определение:

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Например:

Пример:

Упростите выражение.

Решение:

Основные свойства модуля

Для всех:

Пример:

Докажите свойство №5 .

Доказательство:

Предположим, что существуют такие, что

Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны ):

а это противоречит определению модуля.

Следовательно, таких не существует, а значит, при всех выполняется неравенство

Примеры для самостоятельного решения:

1) Докажите свойство №6 .

2) Упростите выражение.

Ответы:

1) Воспользуемся свойством №3 : , а поскольку, тогда

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем?

a. Сравним числа и и:

b. Теперь сравним и:

Складываем значения модулей:

Модуль числа. Коротко о главном.

Модуль (абсолютная величина) числа - это само число, если, и число, если:

Свойства модуля:

  1. Модуль числа есть число неотрицательное: ;
  2. Модули противоположных чисел равны: ;
  3. Модуль произведения двух (и более) чисел равен произведению их модулей: ;
  4. Модуль частного двух чисел равен частному их модулей: ;
  5. Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел: ;
  6. Постоянный положительный множитель можно выносить за знак модуля: при;

Ваша цель:

четко знать определение модуля действительного числа;

понимать геометрическую интерпретацию модуля действительного числа и уметь применять ее при решении задач;

знать свойства модуля и уметь применять при решении задач;

уметь представление о расстоянии между двумя точками координатной прямой и уметь использовать его при решении задач.

Входная информация

Понятие модуля действительного числа. Модулем действительного числа называют само это число , если , и противоположны ему число , если < 0.

Модуль числа обозначают и записывают:

Геометрическая интерпретация модуля . Геометрически модуль действительного числа есть расстояние от точки, изображающей данное число на координатной прямой, до начала отсчета.

Решение уравнений и неравенств с модулями на основе геометрического смысла модуля . Пользуясь понятием «расстояние между двумя точками координатной прямой» можно решать уравнения вида или неравенства вида , где вместо знака может стоять любой из знаков .

Пример. Решим уравнение .

Решение. Переформулируем задачу геометрически. Поскольку -это расстояние на координатной прямой между точками с координатами и , значит, требуется найти координаты таких точек, расстояние от которых до точек с координатой 1 равно 2.

Короче, на координатной прямой найти множество координат точек, расстояние от которых до точки с координатной 1 равно 2.

Решим эту задачу. Отметим на координатной прямой точку, координата которой равна 1 (рис. 6) На две единицы от этой точки удалены точки, координаты которых равны -1 и 3. Значит, искомое множество координат точек есть множество, состоящее из чисел -1 и 3.

Ответ: -1; 3.

Как найти расстояние между двумя точками координатной прямой. Число, выражающее расстояние между точками и , называют расстоянием между числами и .

Для любых двух точек и координатной прямой расстояние

.

Основные свойства модуля действительного числа:

3. ;

7. ;

8. ;

9. ;

При имеем:



11. тогда только тогда, когда или ;

12. тогда только тогда, когда ;

13. тогда только тогда, когда или ;

14. тогда только тогда, когда ;

11. тогда только тогда, когда .

Практическая часть

Задание 1. Возьмите чистый лист бумаги и на нем запишите ответы ко в сем устным упражнениям, приведенным ниже.

Свои ответы сверьте с ответами или краткими указаниями, помещенными в конце учебного элемента в рубрике «Ваш помощник».

1. Раскройте знак модуля:

а) |–5|; б) |5|; в) |0|; г) |p|.

2. Сравните между собой числа:

а) || и –; в) |0| и 0; д) – |–3| и –3; ж) –4|а | и 0;

б) |–p| и p; г) |–7,3| и –7,3; е) |а | и 0; з) 2|а | и |2а |.

3. Как при помощи знака модуля записать, что по крайней мере одно из чисел а , b или с отлично от нуля?

4. Как при помощи знака равенства записать, что каждое из чисел а , b и с равно нулю?

5. Найдите значение выражения:

а) |а | – а ; б) а + |а |.

6. Решите уравнение:

а) |х | = 3; в) |х | = –2; д) |2х – 5| = 0;

б) |х | = 0; г) |х – 3| = 4; е) |3х – 7| = – 9.

7. Что можно сказать о числах х и у , если:

а) |х | = х ; б) |х | = –х ; в) |х | = |у |?

8. Решите уравнение:

а) |х – 2| = х – 2; в) |х – 3| =|7 – х |;

б) |х – 2| = 2 – х ; г) |х – 5| =|х – 6|.

9. Что можно сказать о числе у , если имеет место равенство:

а) ïх ï = у ; б) ïх ï = –у ?

10. Решите неравенство:

а) |х | > х ; в) |х | > –х ; д) |х | £ х ;

б) |х | ³ х ; г) |х | ³ –х ; е) |х | £ –х .

11. Укажите все значения а, для которых имеет место равенство:

а) |а | = а ; б) |а | = –а ; в) а – |–а | =0; г) |а |а = –1; д) = 1.

12. Найдите все значения b , для которых имеет место неравенство:

а) |b | ³ 1; б) |b | < 1; в) |b | £ 0; г) |b | ³ 0; д) 1 < |b | < 2.

С некоторыми видами следующих заданий вы могли встречаться на уроках математики. Самоопределитесь, какие из следующих заданий вам необходимо выполнить. В случае затруднений обращайтесь к рубрике «Ваш помощник», за консультацией к учителю или за помощью к товарищу.

Задание 2. Исходя из определения модуля действительного числа, решите уравнение:

Задание 4. Расстояние между точками, изображающими действительные числа α и β на координатной прямой, равно | α β |. Пользуясь этим, решите уравнение.

Модулем или абсолютной величиной действительного числа называется само это число, если х неотрицательно, и противоположное число, т.е. -х, если х отрицательно:

Очевидно, но определению, |х| > 0. Известны следующие свойства абсолютных величин:

  • 1) ху | = |дг| |г/1;
  • 2>- -Н;

У у

  • 3) |х+г/|
  • 4) |дт-г/|

Модуль разности двух чисел х - а | есть расстояние между точками х и а на числовой прямой (при любых х и а).

Из этого следует, в частности, что решениями неравенствах - а 0) являются все точки х интервала - г, а + с), т.е. числа, удовлетворяющие неравенству а-г+ г.

Такой интервал - 8, а + г) называется 8-окрестностью точки а.

Основные свойства функций

Как мы уже заявляли, все величины в математике делят на постоянные и переменные. Постоянной величиной называется величина, сохраняющая одно и то же значение.

Переменной величиной называется величина, которая может принимать различные числовые значения.

Определение 10.8. Переменная величина у называется функцией от переменной величины х, если по некоторому правилу каждому значению х е X поставлено в соответствие определенное значение у е У; независимая переменная х обычно называется аргументом, а область X ее изменения называется областью определения функции.

Тот факт, что у есть функция отх, чаще всего выражают символической записью: у = /(х).

Существует несколько способов задания функций. Основными принято считать три: аналитический, табличный и графический.

Аналитический способ. Этот способ состоит в задании связи между аргументом (независимой переменной) и функцией в виде формулы (или формул). Обычно в качестве /(х) выступает некоторое аналитическое выражение, содержащее х. В этом случае говорят, что функция определяется формулой, например, у = 2х + 1, у = tgx и т.д.

Табличный способ задания функции состоит в том, что функция задается таблицей, содержащей значения аргумента х и соответствующие значения функции /(.г). Примерами могут служить таблицы количества преступлений за определенный период, таблицы экспериментальных измерений, таблица логарифмов.

Графический способ. Пусть на плоскости задана система декартовых прямоугольных координат хОу. В основе геометрической интерпретации функции лежит следующее.

Определение 10.9. Графиком функции называется геометрическое место точек плоскости, координаты (х, у) которых удовлетворяют условию: у-Ах).

Функция называется заданной графически, если начерчен ее график. Графический способ широко применяется в экспериментальных измерениях с употреблением самопишущих приборов.

Имея перед глазами наглядный график функций, нетрудно представить себе многие ее свойства, что делает график незаменимым средством исследования функции. Поэтому построение графика является важнейшей (обычно завершающей) частью исследования функции.

Каждый способ имеет как свои достоинства, так и недостатки. Так, к достоинствам графического способа можно отнести его наглядность, к недостаткам - его неточность и ограниченность представления.

Перейдем теперь к рассмотрению основных свойств функций.

Четность и нечетность. Функция у = f(x) называется четной, если для любого х выполняется условие f(-x) = f(x). Если же для х из области определения выполняется условие /(-х) = -/(х), то функция называется нечетной. Функция, которая не является четной или нечетной, называется функцией общего вида.

  • 1) у = х 2 - четная функция, так как f(-x) = (-х) 2 = х 2 , т.е./(-х) =/(.г);
  • 2) у = х 3 - нечетная функция, так как (-х) 3 = -х 3 , т.с. /(-х) = -/(х);
  • 3) у = х 2 + х есть функция общего вида. Здесь /(х) = х 2 + х, /(-х) = (-х) 2 +
  • (-х) = х 2 - х,/(-х) */(х);/(-х) -/"/(-х).

График четной функции симметричен относительно оси Ох, а график нечетной функции симметричен относительно начала координат.

Монотонность. Функция у =/(х) называется возрастающей на промежутке X, если для любых х, х 2 е X из неравенства х 2 > х, следует /(х 2) > /(х,). Функция у =/(х) называется убывающей, если из х 2 > х, следует/(х 2) (х,).

Функция называется монотонной на промежутке X, если она или возрастает на всем этом промежутке, или убывает на нем.

Например, функция у = х 2 убывает на (-°°; 0) и возрастает на (0; +°°).

Заметим, что мы дали определение функции монотонной в строгом смысле. Вообще к монотонным функциям относятся неубывающие функции, т.е. такие, для которых из х 2 > х, следует/(х 2) >/(х,), и невозрастающие функции, т.е. такие, для которых из х 2 > х, следует/(х 2)

Ограниченность. Функция у =/(х) называется ограниченной на промежутке X, если существует такое число М > 0, что |/(х)| М для любого х е X.

Например, функция у =-

ограничена на всей числовой прямой, так

Периодичность. Функция у = f(x) называется периодической , если существует такое число Т ^ О, что f(x + Т = f(x) для всех х из области определения функции.

В этом случае Т называется периодом функции. Очевидно, если Т - период функции у = f(x), то периодами этой функции являются также 2Г, 3Т и т.д. Поэтому обычно периодом функции называется наименьший положительный период (если он существует). Например, функциях/ = cos.г имеет период Т= 2п, а функция у = tg Зх - период п/3.